This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A wff th containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifboth.1 | |- ( A = if ( ph , A , B ) -> ( ps <-> th ) ) |
|
| ifboth.2 | |- ( B = if ( ph , A , B ) -> ( ch <-> th ) ) |
||
| ifbothda.3 | |- ( ( et /\ ph ) -> ps ) |
||
| ifbothda.4 | |- ( ( et /\ -. ph ) -> ch ) |
||
| Assertion | ifbothda | |- ( et -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifboth.1 | |- ( A = if ( ph , A , B ) -> ( ps <-> th ) ) |
|
| 2 | ifboth.2 | |- ( B = if ( ph , A , B ) -> ( ch <-> th ) ) |
|
| 3 | ifbothda.3 | |- ( ( et /\ ph ) -> ps ) |
|
| 4 | ifbothda.4 | |- ( ( et /\ -. ph ) -> ch ) |
|
| 5 | iftrue | |- ( ph -> if ( ph , A , B ) = A ) |
|
| 6 | 5 | eqcomd | |- ( ph -> A = if ( ph , A , B ) ) |
| 7 | 6 1 | syl | |- ( ph -> ( ps <-> th ) ) |
| 8 | 7 | adantl | |- ( ( et /\ ph ) -> ( ps <-> th ) ) |
| 9 | 3 8 | mpbid | |- ( ( et /\ ph ) -> th ) |
| 10 | iffalse | |- ( -. ph -> if ( ph , A , B ) = B ) |
|
| 11 | 10 | eqcomd | |- ( -. ph -> B = if ( ph , A , B ) ) |
| 12 | 11 2 | syl | |- ( -. ph -> ( ch <-> th ) ) |
| 13 | 12 | adantl | |- ( ( et /\ -. ph ) -> ( ch <-> th ) ) |
| 14 | 4 13 | mpbid | |- ( ( et /\ -. ph ) -> th ) |
| 15 | 9 14 | pm2.61dan | |- ( et -> th ) |