This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
||
| dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
| dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
| dvmptsub.c | |- ( ( ph /\ x e. X ) -> C e. CC ) |
||
| dvmptsub.d | |- ( ( ph /\ x e. X ) -> D e. W ) |
||
| dvmptsub.dc | |- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> D ) ) |
||
| Assertion | dvmptsub | |- ( ph -> ( S _D ( x e. X |-> ( A - C ) ) ) = ( x e. X |-> ( B - D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 3 | dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
| 4 | dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
| 5 | dvmptsub.c | |- ( ( ph /\ x e. X ) -> C e. CC ) |
|
| 6 | dvmptsub.d | |- ( ( ph /\ x e. X ) -> D e. W ) |
|
| 7 | dvmptsub.dc | |- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> D ) ) |
|
| 8 | 5 | negcld | |- ( ( ph /\ x e. X ) -> -u C e. CC ) |
| 9 | negex | |- -u D e. _V |
|
| 10 | 9 | a1i | |- ( ( ph /\ x e. X ) -> -u D e. _V ) |
| 11 | 1 5 6 7 | dvmptneg | |- ( ph -> ( S _D ( x e. X |-> -u C ) ) = ( x e. X |-> -u D ) ) |
| 12 | 1 2 3 4 8 10 11 | dvmptadd | |- ( ph -> ( S _D ( x e. X |-> ( A + -u C ) ) ) = ( x e. X |-> ( B + -u D ) ) ) |
| 13 | 2 5 | negsubd | |- ( ( ph /\ x e. X ) -> ( A + -u C ) = ( A - C ) ) |
| 14 | 13 | mpteq2dva | |- ( ph -> ( x e. X |-> ( A + -u C ) ) = ( x e. X |-> ( A - C ) ) ) |
| 15 | 14 | oveq2d | |- ( ph -> ( S _D ( x e. X |-> ( A + -u C ) ) ) = ( S _D ( x e. X |-> ( A - C ) ) ) ) |
| 16 | 1 2 3 4 | dvmptcl | |- ( ( ph /\ x e. X ) -> B e. CC ) |
| 17 | 1 5 6 7 | dvmptcl | |- ( ( ph /\ x e. X ) -> D e. CC ) |
| 18 | 16 17 | negsubd | |- ( ( ph /\ x e. X ) -> ( B + -u D ) = ( B - D ) ) |
| 19 | 18 | mpteq2dva | |- ( ph -> ( x e. X |-> ( B + -u D ) ) = ( x e. X |-> ( B - D ) ) ) |
| 20 | 12 15 19 | 3eqtr3d | |- ( ph -> ( S _D ( x e. X |-> ( A - C ) ) ) = ( x e. X |-> ( B - D ) ) ) |