This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinite sum of 1 + A ^ 1 + A ^ 2 ... is ( 1 / ( 1 - A ) ) . (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geoisum | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> sum_ k e. NN0 ( A ^ k ) = ( 1 / ( 1 - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 2 | 0zd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 e. ZZ ) |
|
| 3 | oveq2 | |- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
|
| 4 | eqid | |- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
|
| 5 | ovex | |- ( A ^ k ) e. _V |
|
| 6 | 3 4 5 | fvmpt | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 7 | 6 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 8 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 9 | 8 | adantlr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 10 | simpl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
|
| 11 | simpr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
|
| 12 | 10 11 7 | geolim | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) ) |
| 13 | 1 2 7 9 12 | isumclim | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> sum_ k e. NN0 ( A ^ k ) = ( 1 / ( 1 - A ) ) ) |