This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two functions defined on a ball whose derivatives are the same and which are equal at any given point C in the ball must be equal everywhere. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dv11cn.x | |- X = ( A ( ball ` ( abs o. - ) ) R ) |
|
| dv11cn.a | |- ( ph -> A e. CC ) |
||
| dv11cn.r | |- ( ph -> R e. RR* ) |
||
| dv11cn.f | |- ( ph -> F : X --> CC ) |
||
| dv11cn.g | |- ( ph -> G : X --> CC ) |
||
| dv11cn.d | |- ( ph -> dom ( CC _D F ) = X ) |
||
| dv11cn.e | |- ( ph -> ( CC _D F ) = ( CC _D G ) ) |
||
| dv11cn.c | |- ( ph -> C e. X ) |
||
| dv11cn.p | |- ( ph -> ( F ` C ) = ( G ` C ) ) |
||
| Assertion | dv11cn | |- ( ph -> F = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dv11cn.x | |- X = ( A ( ball ` ( abs o. - ) ) R ) |
|
| 2 | dv11cn.a | |- ( ph -> A e. CC ) |
|
| 3 | dv11cn.r | |- ( ph -> R e. RR* ) |
|
| 4 | dv11cn.f | |- ( ph -> F : X --> CC ) |
|
| 5 | dv11cn.g | |- ( ph -> G : X --> CC ) |
|
| 6 | dv11cn.d | |- ( ph -> dom ( CC _D F ) = X ) |
|
| 7 | dv11cn.e | |- ( ph -> ( CC _D F ) = ( CC _D G ) ) |
|
| 8 | dv11cn.c | |- ( ph -> C e. X ) |
|
| 9 | dv11cn.p | |- ( ph -> ( F ` C ) = ( G ` C ) ) |
|
| 10 | 4 | ffnd | |- ( ph -> F Fn X ) |
| 11 | 5 | ffnd | |- ( ph -> G Fn X ) |
| 12 | 1 | ovexi | |- X e. _V |
| 13 | 12 | a1i | |- ( ph -> X e. _V ) |
| 14 | inidm | |- ( X i^i X ) = X |
|
| 15 | 10 11 13 13 14 | offn | |- ( ph -> ( F oF - G ) Fn X ) |
| 16 | 0cn | |- 0 e. CC |
|
| 17 | fnconstg | |- ( 0 e. CC -> ( X X. { 0 } ) Fn X ) |
|
| 18 | 16 17 | mp1i | |- ( ph -> ( X X. { 0 } ) Fn X ) |
| 19 | subcl | |- ( ( x e. CC /\ y e. CC ) -> ( x - y ) e. CC ) |
|
| 20 | 19 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x - y ) e. CC ) |
| 21 | 20 4 5 13 13 14 | off | |- ( ph -> ( F oF - G ) : X --> CC ) |
| 22 | 21 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( ( F oF - G ) ` x ) e. CC ) |
| 23 | 8 | anim1ci | |- ( ( ph /\ x e. X ) -> ( x e. X /\ C e. X ) ) |
| 24 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 25 | blssm | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A e. CC /\ R e. RR* ) -> ( A ( ball ` ( abs o. - ) ) R ) C_ CC ) |
|
| 26 | 24 2 3 25 | mp3an2i | |- ( ph -> ( A ( ball ` ( abs o. - ) ) R ) C_ CC ) |
| 27 | 1 26 | eqsstrid | |- ( ph -> X C_ CC ) |
| 28 | 4 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( F ` x ) e. CC ) |
| 29 | 5 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( G ` x ) e. CC ) |
| 30 | 4 | feqmptd | |- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
| 31 | 5 | feqmptd | |- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
| 32 | 13 28 29 30 31 | offval2 | |- ( ph -> ( F oF - G ) = ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ) |
| 33 | 32 | oveq2d | |- ( ph -> ( CC _D ( F oF - G ) ) = ( CC _D ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ) ) |
| 34 | cnelprrecn | |- CC e. { RR , CC } |
|
| 35 | 34 | a1i | |- ( ph -> CC e. { RR , CC } ) |
| 36 | fvexd | |- ( ( ph /\ x e. X ) -> ( ( CC _D F ) ` x ) e. _V ) |
|
| 37 | 30 | oveq2d | |- ( ph -> ( CC _D F ) = ( CC _D ( x e. X |-> ( F ` x ) ) ) ) |
| 38 | dvfcn | |- ( CC _D F ) : dom ( CC _D F ) --> CC |
|
| 39 | 6 | feq2d | |- ( ph -> ( ( CC _D F ) : dom ( CC _D F ) --> CC <-> ( CC _D F ) : X --> CC ) ) |
| 40 | 38 39 | mpbii | |- ( ph -> ( CC _D F ) : X --> CC ) |
| 41 | 40 | feqmptd | |- ( ph -> ( CC _D F ) = ( x e. X |-> ( ( CC _D F ) ` x ) ) ) |
| 42 | 37 41 | eqtr3d | |- ( ph -> ( CC _D ( x e. X |-> ( F ` x ) ) ) = ( x e. X |-> ( ( CC _D F ) ` x ) ) ) |
| 43 | 31 | oveq2d | |- ( ph -> ( CC _D G ) = ( CC _D ( x e. X |-> ( G ` x ) ) ) ) |
| 44 | 7 41 43 | 3eqtr3rd | |- ( ph -> ( CC _D ( x e. X |-> ( G ` x ) ) ) = ( x e. X |-> ( ( CC _D F ) ` x ) ) ) |
| 45 | 35 28 36 42 29 36 44 | dvmptsub | |- ( ph -> ( CC _D ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ) = ( x e. X |-> ( ( ( CC _D F ) ` x ) - ( ( CC _D F ) ` x ) ) ) ) |
| 46 | 40 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( ( CC _D F ) ` x ) e. CC ) |
| 47 | 46 | subidd | |- ( ( ph /\ x e. X ) -> ( ( ( CC _D F ) ` x ) - ( ( CC _D F ) ` x ) ) = 0 ) |
| 48 | 47 | mpteq2dva | |- ( ph -> ( x e. X |-> ( ( ( CC _D F ) ` x ) - ( ( CC _D F ) ` x ) ) ) = ( x e. X |-> 0 ) ) |
| 49 | fconstmpt | |- ( X X. { 0 } ) = ( x e. X |-> 0 ) |
|
| 50 | 48 49 | eqtr4di | |- ( ph -> ( x e. X |-> ( ( ( CC _D F ) ` x ) - ( ( CC _D F ) ` x ) ) ) = ( X X. { 0 } ) ) |
| 51 | 33 45 50 | 3eqtrd | |- ( ph -> ( CC _D ( F oF - G ) ) = ( X X. { 0 } ) ) |
| 52 | 51 | dmeqd | |- ( ph -> dom ( CC _D ( F oF - G ) ) = dom ( X X. { 0 } ) ) |
| 53 | snnzg | |- ( 0 e. CC -> { 0 } =/= (/) ) |
|
| 54 | dmxp | |- ( { 0 } =/= (/) -> dom ( X X. { 0 } ) = X ) |
|
| 55 | 16 53 54 | mp2b | |- dom ( X X. { 0 } ) = X |
| 56 | 52 55 | eqtrdi | |- ( ph -> dom ( CC _D ( F oF - G ) ) = X ) |
| 57 | eqimss2 | |- ( dom ( CC _D ( F oF - G ) ) = X -> X C_ dom ( CC _D ( F oF - G ) ) ) |
|
| 58 | 56 57 | syl | |- ( ph -> X C_ dom ( CC _D ( F oF - G ) ) ) |
| 59 | 0red | |- ( ph -> 0 e. RR ) |
|
| 60 | 51 | fveq1d | |- ( ph -> ( ( CC _D ( F oF - G ) ) ` x ) = ( ( X X. { 0 } ) ` x ) ) |
| 61 | c0ex | |- 0 e. _V |
|
| 62 | 61 | fvconst2 | |- ( x e. X -> ( ( X X. { 0 } ) ` x ) = 0 ) |
| 63 | 60 62 | sylan9eq | |- ( ( ph /\ x e. X ) -> ( ( CC _D ( F oF - G ) ) ` x ) = 0 ) |
| 64 | 63 | abs00bd | |- ( ( ph /\ x e. X ) -> ( abs ` ( ( CC _D ( F oF - G ) ) ` x ) ) = 0 ) |
| 65 | 0le0 | |- 0 <_ 0 |
|
| 66 | 64 65 | eqbrtrdi | |- ( ( ph /\ x e. X ) -> ( abs ` ( ( CC _D ( F oF - G ) ) ` x ) ) <_ 0 ) |
| 67 | 27 21 2 3 1 58 59 66 | dvlipcn | |- ( ( ph /\ ( x e. X /\ C e. X ) ) -> ( abs ` ( ( ( F oF - G ) ` x ) - ( ( F oF - G ) ` C ) ) ) <_ ( 0 x. ( abs ` ( x - C ) ) ) ) |
| 68 | 23 67 | syldan | |- ( ( ph /\ x e. X ) -> ( abs ` ( ( ( F oF - G ) ` x ) - ( ( F oF - G ) ` C ) ) ) <_ ( 0 x. ( abs ` ( x - C ) ) ) ) |
| 69 | 32 | fveq1d | |- ( ph -> ( ( F oF - G ) ` C ) = ( ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ` C ) ) |
| 70 | fveq2 | |- ( x = C -> ( F ` x ) = ( F ` C ) ) |
|
| 71 | fveq2 | |- ( x = C -> ( G ` x ) = ( G ` C ) ) |
|
| 72 | 70 71 | oveq12d | |- ( x = C -> ( ( F ` x ) - ( G ` x ) ) = ( ( F ` C ) - ( G ` C ) ) ) |
| 73 | eqid | |- ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) = ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) |
|
| 74 | ovex | |- ( ( F ` C ) - ( G ` C ) ) e. _V |
|
| 75 | 72 73 74 | fvmpt | |- ( C e. X -> ( ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ` C ) = ( ( F ` C ) - ( G ` C ) ) ) |
| 76 | 8 75 | syl | |- ( ph -> ( ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ` C ) = ( ( F ` C ) - ( G ` C ) ) ) |
| 77 | 4 8 | ffvelcdmd | |- ( ph -> ( F ` C ) e. CC ) |
| 78 | 77 9 | subeq0bd | |- ( ph -> ( ( F ` C ) - ( G ` C ) ) = 0 ) |
| 79 | 69 76 78 | 3eqtrd | |- ( ph -> ( ( F oF - G ) ` C ) = 0 ) |
| 80 | 79 | adantr | |- ( ( ph /\ x e. X ) -> ( ( F oF - G ) ` C ) = 0 ) |
| 81 | 80 | oveq2d | |- ( ( ph /\ x e. X ) -> ( ( ( F oF - G ) ` x ) - ( ( F oF - G ) ` C ) ) = ( ( ( F oF - G ) ` x ) - 0 ) ) |
| 82 | 22 | subid1d | |- ( ( ph /\ x e. X ) -> ( ( ( F oF - G ) ` x ) - 0 ) = ( ( F oF - G ) ` x ) ) |
| 83 | 81 82 | eqtrd | |- ( ( ph /\ x e. X ) -> ( ( ( F oF - G ) ` x ) - ( ( F oF - G ) ` C ) ) = ( ( F oF - G ) ` x ) ) |
| 84 | 83 | fveq2d | |- ( ( ph /\ x e. X ) -> ( abs ` ( ( ( F oF - G ) ` x ) - ( ( F oF - G ) ` C ) ) ) = ( abs ` ( ( F oF - G ) ` x ) ) ) |
| 85 | 27 | sselda | |- ( ( ph /\ x e. X ) -> x e. CC ) |
| 86 | 27 8 | sseldd | |- ( ph -> C e. CC ) |
| 87 | 86 | adantr | |- ( ( ph /\ x e. X ) -> C e. CC ) |
| 88 | 85 87 | subcld | |- ( ( ph /\ x e. X ) -> ( x - C ) e. CC ) |
| 89 | 88 | abscld | |- ( ( ph /\ x e. X ) -> ( abs ` ( x - C ) ) e. RR ) |
| 90 | 89 | recnd | |- ( ( ph /\ x e. X ) -> ( abs ` ( x - C ) ) e. CC ) |
| 91 | 90 | mul02d | |- ( ( ph /\ x e. X ) -> ( 0 x. ( abs ` ( x - C ) ) ) = 0 ) |
| 92 | 68 84 91 | 3brtr3d | |- ( ( ph /\ x e. X ) -> ( abs ` ( ( F oF - G ) ` x ) ) <_ 0 ) |
| 93 | 22 | absge0d | |- ( ( ph /\ x e. X ) -> 0 <_ ( abs ` ( ( F oF - G ) ` x ) ) ) |
| 94 | 22 | abscld | |- ( ( ph /\ x e. X ) -> ( abs ` ( ( F oF - G ) ` x ) ) e. RR ) |
| 95 | 0re | |- 0 e. RR |
|
| 96 | letri3 | |- ( ( ( abs ` ( ( F oF - G ) ` x ) ) e. RR /\ 0 e. RR ) -> ( ( abs ` ( ( F oF - G ) ` x ) ) = 0 <-> ( ( abs ` ( ( F oF - G ) ` x ) ) <_ 0 /\ 0 <_ ( abs ` ( ( F oF - G ) ` x ) ) ) ) ) |
|
| 97 | 94 95 96 | sylancl | |- ( ( ph /\ x e. X ) -> ( ( abs ` ( ( F oF - G ) ` x ) ) = 0 <-> ( ( abs ` ( ( F oF - G ) ` x ) ) <_ 0 /\ 0 <_ ( abs ` ( ( F oF - G ) ` x ) ) ) ) ) |
| 98 | 92 93 97 | mpbir2and | |- ( ( ph /\ x e. X ) -> ( abs ` ( ( F oF - G ) ` x ) ) = 0 ) |
| 99 | 22 98 | abs00d | |- ( ( ph /\ x e. X ) -> ( ( F oF - G ) ` x ) = 0 ) |
| 100 | 62 | adantl | |- ( ( ph /\ x e. X ) -> ( ( X X. { 0 } ) ` x ) = 0 ) |
| 101 | 99 100 | eqtr4d | |- ( ( ph /\ x e. X ) -> ( ( F oF - G ) ` x ) = ( ( X X. { 0 } ) ` x ) ) |
| 102 | 15 18 101 | eqfnfvd | |- ( ph -> ( F oF - G ) = ( X X. { 0 } ) ) |
| 103 | ofsubeq0 | |- ( ( X e. _V /\ F : X --> CC /\ G : X --> CC ) -> ( ( F oF - G ) = ( X X. { 0 } ) <-> F = G ) ) |
|
| 104 | 12 4 5 103 | mp3an2i | |- ( ph -> ( ( F oF - G ) = ( X X. { 0 } ) <-> F = G ) ) |
| 105 | 102 104 | mpbid | |- ( ph -> F = G ) |