This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013) (Revised by Mario Carneiro, 20-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumz | |- ( ( A C_ ( ZZ>= ` M ) \/ A e. Fin ) -> sum_ k e. A 0 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 2 | simpr | |- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> M e. ZZ ) |
|
| 3 | simpl | |- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> A C_ ( ZZ>= ` M ) ) |
|
| 4 | c0ex | |- 0 e. _V |
|
| 5 | 4 | fvconst2 | |- ( k e. ( ZZ>= ` M ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = 0 ) |
| 6 | ifid | |- if ( k e. A , 0 , 0 ) = 0 |
|
| 7 | 5 6 | eqtr4di | |- ( k e. ( ZZ>= ` M ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = if ( k e. A , 0 , 0 ) ) |
| 8 | 7 | adantl | |- ( ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) /\ k e. ( ZZ>= ` M ) ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = if ( k e. A , 0 , 0 ) ) |
| 9 | 0cnd | |- ( ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) /\ k e. A ) -> 0 e. CC ) |
|
| 10 | 1 2 3 8 9 | zsum | |- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> sum_ k e. A 0 = ( ~~> ` seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ) ) |
| 11 | fclim | |- ~~> : dom ~~> --> CC |
|
| 12 | ffun | |- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
|
| 13 | 11 12 | ax-mp | |- Fun ~~> |
| 14 | serclim0 | |- ( M e. ZZ -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 ) |
|
| 15 | 14 | adantl | |- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 ) |
| 16 | funbrfv | |- ( Fun ~~> -> ( seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 -> ( ~~> ` seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ) = 0 ) ) |
|
| 17 | 13 15 16 | mpsyl | |- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> ( ~~> ` seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ) = 0 ) |
| 18 | 10 17 | eqtrd | |- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> sum_ k e. A 0 = 0 ) |
| 19 | uzf | |- ZZ>= : ZZ --> ~P ZZ |
|
| 20 | 19 | fdmi | |- dom ZZ>= = ZZ |
| 21 | 20 | eleq2i | |- ( M e. dom ZZ>= <-> M e. ZZ ) |
| 22 | ndmfv | |- ( -. M e. dom ZZ>= -> ( ZZ>= ` M ) = (/) ) |
|
| 23 | 21 22 | sylnbir | |- ( -. M e. ZZ -> ( ZZ>= ` M ) = (/) ) |
| 24 | 23 | sseq2d | |- ( -. M e. ZZ -> ( A C_ ( ZZ>= ` M ) <-> A C_ (/) ) ) |
| 25 | 24 | biimpac | |- ( ( A C_ ( ZZ>= ` M ) /\ -. M e. ZZ ) -> A C_ (/) ) |
| 26 | ss0 | |- ( A C_ (/) -> A = (/) ) |
|
| 27 | sumeq1 | |- ( A = (/) -> sum_ k e. A 0 = sum_ k e. (/) 0 ) |
|
| 28 | sum0 | |- sum_ k e. (/) 0 = 0 |
|
| 29 | 27 28 | eqtrdi | |- ( A = (/) -> sum_ k e. A 0 = 0 ) |
| 30 | 25 26 29 | 3syl | |- ( ( A C_ ( ZZ>= ` M ) /\ -. M e. ZZ ) -> sum_ k e. A 0 = 0 ) |
| 31 | 18 30 | pm2.61dan | |- ( A C_ ( ZZ>= ` M ) -> sum_ k e. A 0 = 0 ) |
| 32 | fz1f1o | |- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
|
| 33 | eqidd | |- ( k = ( f ` n ) -> 0 = 0 ) |
|
| 34 | simpl | |- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( # ` A ) e. NN ) |
|
| 35 | simpr | |- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 36 | 0cnd | |- ( ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ k e. A ) -> 0 e. CC ) |
|
| 37 | elfznn | |- ( n e. ( 1 ... ( # ` A ) ) -> n e. NN ) |
|
| 38 | 4 | fvconst2 | |- ( n e. NN -> ( ( NN X. { 0 } ) ` n ) = 0 ) |
| 39 | 37 38 | syl | |- ( n e. ( 1 ... ( # ` A ) ) -> ( ( NN X. { 0 } ) ` n ) = 0 ) |
| 40 | 39 | adantl | |- ( ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( NN X. { 0 } ) ` n ) = 0 ) |
| 41 | 33 34 35 36 40 | fsum | |- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> sum_ k e. A 0 = ( seq 1 ( + , ( NN X. { 0 } ) ) ` ( # ` A ) ) ) |
| 42 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 43 | 42 | ser0 | |- ( ( # ` A ) e. NN -> ( seq 1 ( + , ( NN X. { 0 } ) ) ` ( # ` A ) ) = 0 ) |
| 44 | 43 | adantr | |- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( + , ( NN X. { 0 } ) ) ` ( # ` A ) ) = 0 ) |
| 45 | 41 44 | eqtrd | |- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> sum_ k e. A 0 = 0 ) |
| 46 | 45 | ex | |- ( ( # ` A ) e. NN -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> sum_ k e. A 0 = 0 ) ) |
| 47 | 46 | exlimdv | |- ( ( # ` A ) e. NN -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> sum_ k e. A 0 = 0 ) ) |
| 48 | 47 | imp | |- ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> sum_ k e. A 0 = 0 ) |
| 49 | 29 48 | jaoi | |- ( ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ k e. A 0 = 0 ) |
| 50 | 32 49 | syl | |- ( A e. Fin -> sum_ k e. A 0 = 0 ) |
| 51 | 31 50 | jaoi | |- ( ( A C_ ( ZZ>= ` M ) \/ A e. Fin ) -> sum_ k e. A 0 = 0 ) |