This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If X is a convergent point of the infinite series, then X is within the closed disk of radius R centered at zero. Or, by contraposition, the series diverges at any point strictly more than R from the origin. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| radcnv.a | |- ( ph -> A : NN0 --> CC ) |
||
| radcnv.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
||
| radcnvle.x | |- ( ph -> X e. CC ) |
||
| radcnvle.a | |- ( ph -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) |
||
| Assertion | radcnvle | |- ( ph -> ( abs ` X ) <_ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | radcnv.a | |- ( ph -> A : NN0 --> CC ) |
|
| 3 | radcnv.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 4 | radcnvle.x | |- ( ph -> X e. CC ) |
|
| 5 | radcnvle.a | |- ( ph -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) |
|
| 6 | ressxr | |- RR C_ RR* |
|
| 7 | 4 | abscld | |- ( ph -> ( abs ` X ) e. RR ) |
| 8 | 6 7 | sselid | |- ( ph -> ( abs ` X ) e. RR* ) |
| 9 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 10 | 1 2 3 | radcnvcl | |- ( ph -> R e. ( 0 [,] +oo ) ) |
| 11 | 9 10 | sselid | |- ( ph -> R e. RR* ) |
| 12 | simpr | |- ( ( ph /\ R < ( abs ` X ) ) -> R < ( abs ` X ) ) |
|
| 13 | 11 | adantr | |- ( ( ph /\ R < ( abs ` X ) ) -> R e. RR* ) |
| 14 | 7 | adantr | |- ( ( ph /\ R < ( abs ` X ) ) -> ( abs ` X ) e. RR ) |
| 15 | 0xr | |- 0 e. RR* |
|
| 16 | pnfxr | |- +oo e. RR* |
|
| 17 | elicc1 | |- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) ) |
|
| 18 | 15 16 17 | mp2an | |- ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) |
| 19 | 10 18 | sylib | |- ( ph -> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) |
| 20 | 19 | simp2d | |- ( ph -> 0 <_ R ) |
| 21 | ge0gtmnf | |- ( ( R e. RR* /\ 0 <_ R ) -> -oo < R ) |
|
| 22 | 11 20 21 | syl2anc | |- ( ph -> -oo < R ) |
| 23 | 22 | adantr | |- ( ( ph /\ R < ( abs ` X ) ) -> -oo < R ) |
| 24 | 8 | adantr | |- ( ( ph /\ R < ( abs ` X ) ) -> ( abs ` X ) e. RR* ) |
| 25 | 13 24 12 | xrltled | |- ( ( ph /\ R < ( abs ` X ) ) -> R <_ ( abs ` X ) ) |
| 26 | xrre | |- ( ( ( R e. RR* /\ ( abs ` X ) e. RR ) /\ ( -oo < R /\ R <_ ( abs ` X ) ) ) -> R e. RR ) |
|
| 27 | 13 14 23 25 26 | syl22anc | |- ( ( ph /\ R < ( abs ` X ) ) -> R e. RR ) |
| 28 | avglt1 | |- ( ( R e. RR /\ ( abs ` X ) e. RR ) -> ( R < ( abs ` X ) <-> R < ( ( R + ( abs ` X ) ) / 2 ) ) ) |
|
| 29 | 27 14 28 | syl2anc | |- ( ( ph /\ R < ( abs ` X ) ) -> ( R < ( abs ` X ) <-> R < ( ( R + ( abs ` X ) ) / 2 ) ) ) |
| 30 | 12 29 | mpbid | |- ( ( ph /\ R < ( abs ` X ) ) -> R < ( ( R + ( abs ` X ) ) / 2 ) ) |
| 31 | 27 14 | readdcld | |- ( ( ph /\ R < ( abs ` X ) ) -> ( R + ( abs ` X ) ) e. RR ) |
| 32 | 31 | rehalfcld | |- ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) e. RR ) |
| 33 | ssrab2 | |- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR |
|
| 34 | 33 6 | sstri | |- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* |
| 35 | 2 | adantr | |- ( ( ph /\ R < ( abs ` X ) ) -> A : NN0 --> CC ) |
| 36 | 32 | recnd | |- ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) e. CC ) |
| 37 | 4 | adantr | |- ( ( ph /\ R < ( abs ` X ) ) -> X e. CC ) |
| 38 | 0red | |- ( ( ph /\ R < ( abs ` X ) ) -> 0 e. RR ) |
|
| 39 | 20 | adantr | |- ( ( ph /\ R < ( abs ` X ) ) -> 0 <_ R ) |
| 40 | 38 27 32 39 30 | lelttrd | |- ( ( ph /\ R < ( abs ` X ) ) -> 0 < ( ( R + ( abs ` X ) ) / 2 ) ) |
| 41 | 38 32 40 | ltled | |- ( ( ph /\ R < ( abs ` X ) ) -> 0 <_ ( ( R + ( abs ` X ) ) / 2 ) ) |
| 42 | 32 41 | absidd | |- ( ( ph /\ R < ( abs ` X ) ) -> ( abs ` ( ( R + ( abs ` X ) ) / 2 ) ) = ( ( R + ( abs ` X ) ) / 2 ) ) |
| 43 | avglt2 | |- ( ( R e. RR /\ ( abs ` X ) e. RR ) -> ( R < ( abs ` X ) <-> ( ( R + ( abs ` X ) ) / 2 ) < ( abs ` X ) ) ) |
|
| 44 | 27 14 43 | syl2anc | |- ( ( ph /\ R < ( abs ` X ) ) -> ( R < ( abs ` X ) <-> ( ( R + ( abs ` X ) ) / 2 ) < ( abs ` X ) ) ) |
| 45 | 12 44 | mpbid | |- ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) < ( abs ` X ) ) |
| 46 | 42 45 | eqbrtrd | |- ( ( ph /\ R < ( abs ` X ) ) -> ( abs ` ( ( R + ( abs ` X ) ) / 2 ) ) < ( abs ` X ) ) |
| 47 | 5 | adantr | |- ( ( ph /\ R < ( abs ` X ) ) -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) |
| 48 | 1 35 36 37 46 47 | radcnvlem3 | |- ( ( ph /\ R < ( abs ` X ) ) -> seq 0 ( + , ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) e. dom ~~> ) |
| 49 | fveq2 | |- ( y = ( ( R + ( abs ` X ) ) / 2 ) -> ( G ` y ) = ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) |
|
| 50 | 49 | seqeq3d | |- ( y = ( ( R + ( abs ` X ) ) / 2 ) -> seq 0 ( + , ( G ` y ) ) = seq 0 ( + , ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) ) |
| 51 | 50 | eleq1d | |- ( y = ( ( R + ( abs ` X ) ) / 2 ) -> ( seq 0 ( + , ( G ` y ) ) e. dom ~~> <-> seq 0 ( + , ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) e. dom ~~> ) ) |
| 52 | fveq2 | |- ( r = y -> ( G ` r ) = ( G ` y ) ) |
|
| 53 | 52 | seqeq3d | |- ( r = y -> seq 0 ( + , ( G ` r ) ) = seq 0 ( + , ( G ` y ) ) ) |
| 54 | 53 | eleq1d | |- ( r = y -> ( seq 0 ( + , ( G ` r ) ) e. dom ~~> <-> seq 0 ( + , ( G ` y ) ) e. dom ~~> ) ) |
| 55 | 54 | cbvrabv | |- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } = { y e. RR | seq 0 ( + , ( G ` y ) ) e. dom ~~> } |
| 56 | 51 55 | elrab2 | |- ( ( ( R + ( abs ` X ) ) / 2 ) e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } <-> ( ( ( R + ( abs ` X ) ) / 2 ) e. RR /\ seq 0 ( + , ( G ` ( ( R + ( abs ` X ) ) / 2 ) ) ) e. dom ~~> ) ) |
| 57 | 32 48 56 | sylanbrc | |- ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| 58 | supxrub | |- ( ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* /\ ( ( R + ( abs ` X ) ) / 2 ) e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) -> ( ( R + ( abs ` X ) ) / 2 ) <_ sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) ) |
|
| 59 | 34 57 58 | sylancr | |- ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) <_ sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) ) |
| 60 | 59 3 | breqtrrdi | |- ( ( ph /\ R < ( abs ` X ) ) -> ( ( R + ( abs ` X ) ) / 2 ) <_ R ) |
| 61 | 32 27 60 | lensymd | |- ( ( ph /\ R < ( abs ` X ) ) -> -. R < ( ( R + ( abs ` X ) ) / 2 ) ) |
| 62 | 30 61 | pm2.65da | |- ( ph -> -. R < ( abs ` X ) ) |
| 63 | 8 11 62 | xrnltled | |- ( ph -> ( abs ` X ) <_ R ) |