This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is nonzero. See nnne0ALT for a shorter proof using ax-pre-mulgt0 . This proof avoids 0lt1 , and thus ax-pre-mulgt0 , by splitting ax-1ne0 into the two separate cases 0 < 1 and 1 < 0 . (Contributed by NM, 27-Sep-1999) Remove dependency on ax-pre-mulgt0 . (Revised by Steven Nguyen, 30-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnne0 | |- ( A e. NN -> A =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 | |- 1 =/= 0 |
|
| 2 | 1re | |- 1 e. RR |
|
| 3 | 0re | |- 0 e. RR |
|
| 4 | 2 3 | lttri2i | |- ( 1 =/= 0 <-> ( 1 < 0 \/ 0 < 1 ) ) |
| 5 | 1 4 | mpbi | |- ( 1 < 0 \/ 0 < 1 ) |
| 6 | breq1 | |- ( x = 1 -> ( x < 0 <-> 1 < 0 ) ) |
|
| 7 | 6 | imbi2d | |- ( x = 1 -> ( ( 1 < 0 -> x < 0 ) <-> ( 1 < 0 -> 1 < 0 ) ) ) |
| 8 | breq1 | |- ( x = y -> ( x < 0 <-> y < 0 ) ) |
|
| 9 | 8 | imbi2d | |- ( x = y -> ( ( 1 < 0 -> x < 0 ) <-> ( 1 < 0 -> y < 0 ) ) ) |
| 10 | breq1 | |- ( x = ( y + 1 ) -> ( x < 0 <-> ( y + 1 ) < 0 ) ) |
|
| 11 | 10 | imbi2d | |- ( x = ( y + 1 ) -> ( ( 1 < 0 -> x < 0 ) <-> ( 1 < 0 -> ( y + 1 ) < 0 ) ) ) |
| 12 | breq1 | |- ( x = A -> ( x < 0 <-> A < 0 ) ) |
|
| 13 | 12 | imbi2d | |- ( x = A -> ( ( 1 < 0 -> x < 0 ) <-> ( 1 < 0 -> A < 0 ) ) ) |
| 14 | id | |- ( 1 < 0 -> 1 < 0 ) |
|
| 15 | simp1 | |- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> y e. NN ) |
|
| 16 | 15 | nnred | |- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> y e. RR ) |
| 17 | 1red | |- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> 1 e. RR ) |
|
| 18 | 16 17 | readdcld | |- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> ( y + 1 ) e. RR ) |
| 19 | 3 2 | readdcli | |- ( 0 + 1 ) e. RR |
| 20 | 19 | a1i | |- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> ( 0 + 1 ) e. RR ) |
| 21 | 0red | |- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> 0 e. RR ) |
|
| 22 | simp3 | |- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> y < 0 ) |
|
| 23 | 16 21 17 22 | ltadd1dd | |- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> ( y + 1 ) < ( 0 + 1 ) ) |
| 24 | ax-1cn | |- 1 e. CC |
|
| 25 | 24 | addlidi | |- ( 0 + 1 ) = 1 |
| 26 | simp2 | |- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> 1 < 0 ) |
|
| 27 | 25 26 | eqbrtrid | |- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> ( 0 + 1 ) < 0 ) |
| 28 | 18 20 21 23 27 | lttrd | |- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> ( y + 1 ) < 0 ) |
| 29 | 28 | 3exp | |- ( y e. NN -> ( 1 < 0 -> ( y < 0 -> ( y + 1 ) < 0 ) ) ) |
| 30 | 29 | a2d | |- ( y e. NN -> ( ( 1 < 0 -> y < 0 ) -> ( 1 < 0 -> ( y + 1 ) < 0 ) ) ) |
| 31 | 7 9 11 13 14 30 | nnind | |- ( A e. NN -> ( 1 < 0 -> A < 0 ) ) |
| 32 | 31 | imp | |- ( ( A e. NN /\ 1 < 0 ) -> A < 0 ) |
| 33 | 32 | lt0ne0d | |- ( ( A e. NN /\ 1 < 0 ) -> A =/= 0 ) |
| 34 | breq2 | |- ( x = 1 -> ( 0 < x <-> 0 < 1 ) ) |
|
| 35 | 34 | imbi2d | |- ( x = 1 -> ( ( 0 < 1 -> 0 < x ) <-> ( 0 < 1 -> 0 < 1 ) ) ) |
| 36 | breq2 | |- ( x = y -> ( 0 < x <-> 0 < y ) ) |
|
| 37 | 36 | imbi2d | |- ( x = y -> ( ( 0 < 1 -> 0 < x ) <-> ( 0 < 1 -> 0 < y ) ) ) |
| 38 | breq2 | |- ( x = ( y + 1 ) -> ( 0 < x <-> 0 < ( y + 1 ) ) ) |
|
| 39 | 38 | imbi2d | |- ( x = ( y + 1 ) -> ( ( 0 < 1 -> 0 < x ) <-> ( 0 < 1 -> 0 < ( y + 1 ) ) ) ) |
| 40 | breq2 | |- ( x = A -> ( 0 < x <-> 0 < A ) ) |
|
| 41 | 40 | imbi2d | |- ( x = A -> ( ( 0 < 1 -> 0 < x ) <-> ( 0 < 1 -> 0 < A ) ) ) |
| 42 | id | |- ( 0 < 1 -> 0 < 1 ) |
|
| 43 | simp1 | |- ( ( y e. NN /\ 0 < 1 /\ 0 < y ) -> y e. NN ) |
|
| 44 | 43 | nnred | |- ( ( y e. NN /\ 0 < 1 /\ 0 < y ) -> y e. RR ) |
| 45 | 1red | |- ( ( y e. NN /\ 0 < 1 /\ 0 < y ) -> 1 e. RR ) |
|
| 46 | simp3 | |- ( ( y e. NN /\ 0 < 1 /\ 0 < y ) -> 0 < y ) |
|
| 47 | simp2 | |- ( ( y e. NN /\ 0 < 1 /\ 0 < y ) -> 0 < 1 ) |
|
| 48 | 44 45 46 47 | addgt0d | |- ( ( y e. NN /\ 0 < 1 /\ 0 < y ) -> 0 < ( y + 1 ) ) |
| 49 | 48 | 3exp | |- ( y e. NN -> ( 0 < 1 -> ( 0 < y -> 0 < ( y + 1 ) ) ) ) |
| 50 | 49 | a2d | |- ( y e. NN -> ( ( 0 < 1 -> 0 < y ) -> ( 0 < 1 -> 0 < ( y + 1 ) ) ) ) |
| 51 | 35 37 39 41 42 50 | nnind | |- ( A e. NN -> ( 0 < 1 -> 0 < A ) ) |
| 52 | 51 | imp | |- ( ( A e. NN /\ 0 < 1 ) -> 0 < A ) |
| 53 | 52 | gt0ne0d | |- ( ( A e. NN /\ 0 < 1 ) -> A =/= 0 ) |
| 54 | 33 53 | jaodan | |- ( ( A e. NN /\ ( 1 < 0 \/ 0 < 1 ) ) -> A =/= 0 ) |
| 55 | 5 54 | mpan2 | |- ( A e. NN -> A =/= 0 ) |