This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for .+ ) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqid.1 | |- ( ( ph /\ x e. S ) -> ( Z .+ x ) = x ) |
|
| seqid.2 | |- ( ph -> Z e. S ) |
||
| seqid.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| seqid.4 | |- ( ph -> ( F ` N ) e. S ) |
||
| seqid.5 | |- ( ( ph /\ x e. ( M ... ( N - 1 ) ) ) -> ( F ` x ) = Z ) |
||
| Assertion | seqid | |- ( ph -> ( seq M ( .+ , F ) |` ( ZZ>= ` N ) ) = seq N ( .+ , F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqid.1 | |- ( ( ph /\ x e. S ) -> ( Z .+ x ) = x ) |
|
| 2 | seqid.2 | |- ( ph -> Z e. S ) |
|
| 3 | seqid.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 4 | seqid.4 | |- ( ph -> ( F ` N ) e. S ) |
|
| 5 | seqid.5 | |- ( ( ph /\ x e. ( M ... ( N - 1 ) ) ) -> ( F ` x ) = Z ) |
|
| 6 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 7 | seq1 | |- ( N e. ZZ -> ( seq N ( .+ , F ) ` N ) = ( F ` N ) ) |
|
| 8 | 3 6 7 | 3syl | |- ( ph -> ( seq N ( .+ , F ) ` N ) = ( F ` N ) ) |
| 9 | seqeq1 | |- ( N = M -> seq N ( .+ , F ) = seq M ( .+ , F ) ) |
|
| 10 | 9 | fveq1d | |- ( N = M -> ( seq N ( .+ , F ) ` N ) = ( seq M ( .+ , F ) ` N ) ) |
| 11 | 10 | eqeq1d | |- ( N = M -> ( ( seq N ( .+ , F ) ` N ) = ( F ` N ) <-> ( seq M ( .+ , F ) ` N ) = ( F ` N ) ) ) |
| 12 | 8 11 | syl5ibcom | |- ( ph -> ( N = M -> ( seq M ( .+ , F ) ` N ) = ( F ` N ) ) ) |
| 13 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 14 | 3 13 | syl | |- ( ph -> M e. ZZ ) |
| 15 | seqm1 | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` N ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` N ) ) ) |
|
| 16 | 14 15 | sylan | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` N ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` N ) ) ) |
| 17 | oveq2 | |- ( x = Z -> ( Z .+ x ) = ( Z .+ Z ) ) |
|
| 18 | id | |- ( x = Z -> x = Z ) |
|
| 19 | 17 18 | eqeq12d | |- ( x = Z -> ( ( Z .+ x ) = x <-> ( Z .+ Z ) = Z ) ) |
| 20 | 1 | ralrimiva | |- ( ph -> A. x e. S ( Z .+ x ) = x ) |
| 21 | 19 20 2 | rspcdva | |- ( ph -> ( Z .+ Z ) = Z ) |
| 22 | 21 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( Z .+ Z ) = Z ) |
| 23 | eluzp1m1 | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
|
| 24 | 14 23 | sylan | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 25 | 5 | adantlr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ x e. ( M ... ( N - 1 ) ) ) -> ( F ` x ) = Z ) |
| 26 | 22 24 25 | seqid3 | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` ( N - 1 ) ) = Z ) |
| 27 | 26 | oveq1d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` N ) ) = ( Z .+ ( F ` N ) ) ) |
| 28 | oveq2 | |- ( x = ( F ` N ) -> ( Z .+ x ) = ( Z .+ ( F ` N ) ) ) |
|
| 29 | id | |- ( x = ( F ` N ) -> x = ( F ` N ) ) |
|
| 30 | 28 29 | eqeq12d | |- ( x = ( F ` N ) -> ( ( Z .+ x ) = x <-> ( Z .+ ( F ` N ) ) = ( F ` N ) ) ) |
| 31 | 20 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> A. x e. S ( Z .+ x ) = x ) |
| 32 | 4 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( F ` N ) e. S ) |
| 33 | 30 31 32 | rspcdva | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( Z .+ ( F ` N ) ) = ( F ` N ) ) |
| 34 | 16 27 33 | 3eqtrd | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` N ) = ( F ` N ) ) |
| 35 | 34 | ex | |- ( ph -> ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( seq M ( .+ , F ) ` N ) = ( F ` N ) ) ) |
| 36 | uzp1 | |- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
|
| 37 | 3 36 | syl | |- ( ph -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 38 | 12 35 37 | mpjaod | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( F ` N ) ) |
| 39 | eqidd | |- ( ( ph /\ x e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` x ) = ( F ` x ) ) |
|
| 40 | 3 38 39 | seqfeq2 | |- ( ph -> ( seq M ( .+ , F ) |` ( ZZ>= ` N ) ) = seq N ( .+ , F ) ) |