This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | avglt2 | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
| 2 | 1 | recnd | |- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 3 | 2times | |- ( B e. CC -> ( 2 x. B ) = ( B + B ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( 2 x. B ) = ( B + B ) ) |
| 5 | 4 | breq2d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) < ( 2 x. B ) <-> ( A + B ) < ( B + B ) ) ) |
| 6 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 7 | 2re | |- 2 e. RR |
|
| 8 | 2pos | |- 0 < 2 |
|
| 9 | 7 8 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 10 | 9 | a1i | |- ( ( A e. RR /\ B e. RR ) -> ( 2 e. RR /\ 0 < 2 ) ) |
| 11 | ltdivmul | |- ( ( ( A + B ) e. RR /\ B e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( A + B ) / 2 ) < B <-> ( A + B ) < ( 2 x. B ) ) ) |
|
| 12 | 6 1 10 11 | syl3anc | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) < B <-> ( A + B ) < ( 2 x. B ) ) ) |
| 13 | ltadd1 | |- ( ( A e. RR /\ B e. RR /\ B e. RR ) -> ( A < B <-> ( A + B ) < ( B + B ) ) ) |
|
| 14 | 13 | 3anidm23 | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( A + B ) < ( B + B ) ) ) |
| 15 | 5 12 14 | 3bitr4rd | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |