This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnmetdval.1 | |- D = ( abs o. - ) |
|
| Assertion | cnmetdval | |- ( ( A e. CC /\ B e. CC ) -> ( A D B ) = ( abs ` ( A - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmetdval.1 | |- D = ( abs o. - ) |
|
| 2 | subf | |- - : ( CC X. CC ) --> CC |
|
| 3 | opelxpi | |- ( ( A e. CC /\ B e. CC ) -> <. A , B >. e. ( CC X. CC ) ) |
|
| 4 | fvco3 | |- ( ( - : ( CC X. CC ) --> CC /\ <. A , B >. e. ( CC X. CC ) ) -> ( ( abs o. - ) ` <. A , B >. ) = ( abs ` ( - ` <. A , B >. ) ) ) |
|
| 5 | 2 3 4 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs o. - ) ` <. A , B >. ) = ( abs ` ( - ` <. A , B >. ) ) ) |
| 6 | df-ov | |- ( A D B ) = ( D ` <. A , B >. ) |
|
| 7 | 1 | fveq1i | |- ( D ` <. A , B >. ) = ( ( abs o. - ) ` <. A , B >. ) |
| 8 | 6 7 | eqtri | |- ( A D B ) = ( ( abs o. - ) ` <. A , B >. ) |
| 9 | df-ov | |- ( A - B ) = ( - ` <. A , B >. ) |
|
| 10 | 9 | fveq2i | |- ( abs ` ( A - B ) ) = ( abs ` ( - ` <. A , B >. ) ) |
| 11 | 5 8 10 | 3eqtr4g | |- ( ( A e. CC /\ B e. CC ) -> ( A D B ) = ( abs ` ( A - B ) ) ) |