This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0 is a left identity for addition. This used to be one of our complex number axioms, until it was discovered that it was dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addlid | |- ( A e. CC -> ( 0 + A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex | |- ( A e. CC -> E. x e. CC ( A + x ) = 0 ) |
|
| 2 | cnegex | |- ( x e. CC -> E. y e. CC ( x + y ) = 0 ) |
|
| 3 | 2 | ad2antrl | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) ) -> E. y e. CC ( x + y ) = 0 ) |
| 4 | 0cn | |- 0 e. CC |
|
| 5 | addass | |- ( ( 0 e. CC /\ 0 e. CC /\ y e. CC ) -> ( ( 0 + 0 ) + y ) = ( 0 + ( 0 + y ) ) ) |
|
| 6 | 4 4 5 | mp3an12 | |- ( y e. CC -> ( ( 0 + 0 ) + y ) = ( 0 + ( 0 + y ) ) ) |
| 7 | 6 | adantr | |- ( ( y e. CC /\ ( x + y ) = 0 ) -> ( ( 0 + 0 ) + y ) = ( 0 + ( 0 + y ) ) ) |
| 8 | 7 | 3ad2ant3 | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( ( 0 + 0 ) + y ) = ( 0 + ( 0 + y ) ) ) |
| 9 | 00id | |- ( 0 + 0 ) = 0 |
|
| 10 | 9 | oveq1i | |- ( ( 0 + 0 ) + y ) = ( 0 + y ) |
| 11 | simp1 | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> A e. CC ) |
|
| 12 | simp2l | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> x e. CC ) |
|
| 13 | simp3l | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> y e. CC ) |
|
| 14 | 11 12 13 | addassd | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( ( A + x ) + y ) = ( A + ( x + y ) ) ) |
| 15 | simp2r | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( A + x ) = 0 ) |
|
| 16 | 15 | oveq1d | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( ( A + x ) + y ) = ( 0 + y ) ) |
| 17 | simp3r | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( x + y ) = 0 ) |
|
| 18 | 17 | oveq2d | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( A + ( x + y ) ) = ( A + 0 ) ) |
| 19 | 14 16 18 | 3eqtr3rd | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( A + 0 ) = ( 0 + y ) ) |
| 20 | addrid | |- ( A e. CC -> ( A + 0 ) = A ) |
|
| 21 | 20 | 3ad2ant1 | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( A + 0 ) = A ) |
| 22 | 19 21 | eqtr3d | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( 0 + y ) = A ) |
| 23 | 10 22 | eqtrid | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( ( 0 + 0 ) + y ) = A ) |
| 24 | 22 | oveq2d | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( 0 + ( 0 + y ) ) = ( 0 + A ) ) |
| 25 | 8 23 24 | 3eqtr3rd | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( 0 + A ) = A ) |
| 26 | 25 | 3expia | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) ) -> ( ( y e. CC /\ ( x + y ) = 0 ) -> ( 0 + A ) = A ) ) |
| 27 | 26 | expd | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) ) -> ( y e. CC -> ( ( x + y ) = 0 -> ( 0 + A ) = A ) ) ) |
| 28 | 27 | rexlimdv | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) ) -> ( E. y e. CC ( x + y ) = 0 -> ( 0 + A ) = A ) ) |
| 29 | 3 28 | mpd | |- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) ) -> ( 0 + A ) = A ) |
| 30 | 1 29 | rexlimddv | |- ( A e. CC -> ( 0 + A ) = A ) |