This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm function maps the nonzero complex numbers one-to-one onto its range. (Contributed by Paul Chapman, 21-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logf1o | |- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff1o2 | |- ( exp |` ran log ) : ran log -1-1-onto-> ( CC \ { 0 } ) |
|
| 2 | f1ocnv | |- ( ( exp |` ran log ) : ran log -1-1-onto-> ( CC \ { 0 } ) -> `' ( exp |` ran log ) : ( CC \ { 0 } ) -1-1-onto-> ran log ) |
|
| 3 | 1 2 | ax-mp | |- `' ( exp |` ran log ) : ( CC \ { 0 } ) -1-1-onto-> ran log |
| 4 | dflog2 | |- log = `' ( exp |` ran log ) |
|
| 5 | f1oeq1 | |- ( log = `' ( exp |` ran log ) -> ( log : ( CC \ { 0 } ) -1-1-onto-> ran log <-> `' ( exp |` ran log ) : ( CC \ { 0 } ) -1-1-onto-> ran log ) ) |
|
| 6 | 4 5 | ax-mp | |- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log <-> `' ( exp |` ran log ) : ( CC \ { 0 } ) -1-1-onto-> ran log ) |
| 7 | 3 6 | mpbir | |- log : ( CC \ { 0 } ) -1-1-onto-> ran log |