This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Taylor series for -u log ( 1 - A ) , as an infinite sum. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logtaylsum | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> sum_ k e. NN ( ( A ^ k ) / k ) = -u ( log ` ( 1 - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 2 | 1zzd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. ZZ ) |
|
| 3 | oveq2 | |- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
|
| 4 | id | |- ( n = k -> n = k ) |
|
| 5 | 3 4 | oveq12d | |- ( n = k -> ( ( A ^ n ) / n ) = ( ( A ^ k ) / k ) ) |
| 6 | eqid | |- ( n e. NN |-> ( ( A ^ n ) / n ) ) = ( n e. NN |-> ( ( A ^ n ) / n ) ) |
|
| 7 | ovex | |- ( ( A ^ k ) / k ) e. _V |
|
| 8 | 5 6 7 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( ( A ^ n ) / n ) ) ` k ) = ( ( A ^ k ) / k ) ) |
| 9 | 8 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( A ^ n ) / n ) ) ` k ) = ( ( A ^ k ) / k ) ) |
| 10 | simpl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
|
| 11 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 12 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 13 | 10 11 12 | syl2an | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( A ^ k ) e. CC ) |
| 14 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 15 | 14 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> k e. CC ) |
| 16 | nnne0 | |- ( k e. NN -> k =/= 0 ) |
|
| 17 | 16 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> k =/= 0 ) |
| 18 | 13 15 17 | divcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( A ^ k ) / k ) e. CC ) |
| 19 | logtayl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( ( A ^ n ) / n ) ) ) ~~> -u ( log ` ( 1 - A ) ) ) |
|
| 20 | 1 2 9 18 19 | isumclim | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> sum_ k e. NN ( ( A ^ k ) / k ) = -u ( log ` ( 1 - A ) ) ) |