This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for logtayl . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logtayllem | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 2 | 1nn0 | |- 1 e. NN0 |
|
| 3 | 2 | a1i | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. NN0 ) |
| 4 | oveq2 | |- ( n = k -> ( ( abs ` A ) ^ n ) = ( ( abs ` A ) ^ k ) ) |
|
| 5 | eqid | |- ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) = ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) |
|
| 6 | ovex | |- ( ( abs ` A ) ^ k ) e. _V |
|
| 7 | 4 5 6 | fvmpt | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
| 8 | 7 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
| 9 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 10 | 9 | adantr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. RR ) |
| 11 | reexpcl | |- ( ( ( abs ` A ) e. RR /\ k e. NN0 ) -> ( ( abs ` A ) ^ k ) e. RR ) |
|
| 12 | 10 11 | sylan | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( abs ` A ) ^ k ) e. RR ) |
| 13 | 8 12 | eqeltrd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) e. RR ) |
| 14 | eqeq1 | |- ( n = k -> ( n = 0 <-> k = 0 ) ) |
|
| 15 | oveq2 | |- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
|
| 16 | 14 15 | ifbieq2d | |- ( n = k -> if ( n = 0 , 0 , ( 1 / n ) ) = if ( k = 0 , 0 , ( 1 / k ) ) ) |
| 17 | oveq2 | |- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
|
| 18 | 16 17 | oveq12d | |- ( n = k -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) = ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) |
| 19 | eqid | |- ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) = ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
|
| 20 | ovex | |- ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) e. _V |
|
| 21 | 18 19 20 | fvmpt | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) = ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) |
| 22 | 21 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) = ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) |
| 23 | 0cnd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) /\ k = 0 ) -> 0 e. CC ) |
|
| 24 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 25 | 24 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> k e. CC ) |
| 26 | neqne | |- ( -. k = 0 -> k =/= 0 ) |
|
| 27 | reccl | |- ( ( k e. CC /\ k =/= 0 ) -> ( 1 / k ) e. CC ) |
|
| 28 | 25 26 27 | syl2an | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) /\ -. k = 0 ) -> ( 1 / k ) e. CC ) |
| 29 | 23 28 | ifclda | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> if ( k = 0 , 0 , ( 1 / k ) ) e. CC ) |
| 30 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 31 | 30 | adantlr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 32 | 29 31 | mulcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) e. CC ) |
| 33 | 22 32 | eqeltrd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) e. CC ) |
| 34 | 10 | recnd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. CC ) |
| 35 | absidm | |- ( A e. CC -> ( abs ` ( abs ` A ) ) = ( abs ` A ) ) |
|
| 36 | 35 | adantr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( abs ` A ) ) = ( abs ` A ) ) |
| 37 | simpr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
|
| 38 | 36 37 | eqbrtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( abs ` A ) ) < 1 ) |
| 39 | 34 38 8 | geolim | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ) ~~> ( 1 / ( 1 - ( abs ` A ) ) ) ) |
| 40 | seqex | |- seq 0 ( + , ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ) e. _V |
|
| 41 | ovex | |- ( 1 / ( 1 - ( abs ` A ) ) ) e. _V |
|
| 42 | 40 41 | breldm | |- ( seq 0 ( + , ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ) ~~> ( 1 / ( 1 - ( abs ` A ) ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ) e. dom ~~> ) |
| 43 | 39 42 | syl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ) e. dom ~~> ) |
| 44 | 1red | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. RR ) |
|
| 45 | elnnuz | |- ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) |
|
| 46 | nnrecre | |- ( k e. NN -> ( 1 / k ) e. RR ) |
|
| 47 | 46 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 / k ) e. RR ) |
| 48 | 47 | recnd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 / k ) e. CC ) |
| 49 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 50 | 49 31 | sylan2 | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( A ^ k ) e. CC ) |
| 51 | 48 50 | absmuld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( ( 1 / k ) x. ( A ^ k ) ) ) = ( ( abs ` ( 1 / k ) ) x. ( abs ` ( A ^ k ) ) ) ) |
| 52 | nnrp | |- ( k e. NN -> k e. RR+ ) |
|
| 53 | 52 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> k e. RR+ ) |
| 54 | 53 | rpreccld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 / k ) e. RR+ ) |
| 55 | 54 | rpge0d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 0 <_ ( 1 / k ) ) |
| 56 | 47 55 | absidd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( 1 / k ) ) = ( 1 / k ) ) |
| 57 | simpl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
|
| 58 | absexp | |- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
|
| 59 | 57 49 58 | syl2an | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
| 60 | 56 59 | oveq12d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( abs ` ( 1 / k ) ) x. ( abs ` ( A ^ k ) ) ) = ( ( 1 / k ) x. ( ( abs ` A ) ^ k ) ) ) |
| 61 | 51 60 | eqtrd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( ( 1 / k ) x. ( A ^ k ) ) ) = ( ( 1 / k ) x. ( ( abs ` A ) ^ k ) ) ) |
| 62 | 1red | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 1 e. RR ) |
|
| 63 | 49 12 | sylan2 | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( abs ` A ) ^ k ) e. RR ) |
| 64 | 50 | absge0d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 0 <_ ( abs ` ( A ^ k ) ) ) |
| 65 | 64 59 | breqtrd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 0 <_ ( ( abs ` A ) ^ k ) ) |
| 66 | nnge1 | |- ( k e. NN -> 1 <_ k ) |
|
| 67 | 66 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 1 <_ k ) |
| 68 | 0lt1 | |- 0 < 1 |
|
| 69 | 68 | a1i | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 0 < 1 ) |
| 70 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 71 | 70 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> k e. RR ) |
| 72 | nngt0 | |- ( k e. NN -> 0 < k ) |
|
| 73 | 72 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> 0 < k ) |
| 74 | lerec | |- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( k e. RR /\ 0 < k ) ) -> ( 1 <_ k <-> ( 1 / k ) <_ ( 1 / 1 ) ) ) |
|
| 75 | 62 69 71 73 74 | syl22anc | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 <_ k <-> ( 1 / k ) <_ ( 1 / 1 ) ) ) |
| 76 | 67 75 | mpbid | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 / k ) <_ ( 1 / 1 ) ) |
| 77 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 78 | 76 77 | breqtrdi | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 / k ) <_ 1 ) |
| 79 | 47 62 63 65 78 | lemul1ad | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( 1 / k ) x. ( ( abs ` A ) ^ k ) ) <_ ( 1 x. ( ( abs ` A ) ^ k ) ) ) |
| 80 | 61 79 | eqbrtrd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( ( 1 / k ) x. ( A ^ k ) ) ) <_ ( 1 x. ( ( abs ` A ) ^ k ) ) ) |
| 81 | 49 22 | sylan2 | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) = ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) |
| 82 | nnne0 | |- ( k e. NN -> k =/= 0 ) |
|
| 83 | 82 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> k =/= 0 ) |
| 84 | 83 | neneqd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> -. k = 0 ) |
| 85 | 84 | iffalsed | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> if ( k = 0 , 0 , ( 1 / k ) ) = ( 1 / k ) ) |
| 86 | 85 | oveq1d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) = ( ( 1 / k ) x. ( A ^ k ) ) ) |
| 87 | 81 86 | eqtrd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) = ( ( 1 / k ) x. ( A ^ k ) ) ) |
| 88 | 87 | fveq2d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) ) = ( abs ` ( ( 1 / k ) x. ( A ^ k ) ) ) ) |
| 89 | 49 8 | sylan2 | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
| 90 | 89 | oveq2d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( 1 x. ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) ) = ( 1 x. ( ( abs ` A ) ^ k ) ) ) |
| 91 | 80 88 90 | 3brtr4d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( abs ` ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) ) <_ ( 1 x. ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) ) ) |
| 92 | 45 91 | sylan2br | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ` k ) ) <_ ( 1 x. ( ( n e. NN0 |-> ( ( abs ` A ) ^ n ) ) ` k ) ) ) |
| 93 | 1 3 13 33 43 44 92 | cvgcmpce | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) ) e. dom ~~> ) |