This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Taylor series for -u log ( 1 - A ) . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logtayl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ⇝ - ( log ‘ ( 1 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 2 | 0zd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ∈ ℤ ) | |
| 3 | eqeq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 = 0 ↔ 𝑛 = 0 ) ) | |
| 4 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( 1 / 𝑘 ) = ( 1 / 𝑛 ) ) | |
| 5 | 3 4 | ifbieq2d | ⊢ ( 𝑘 = 𝑛 → if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ) |
| 6 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ 𝑛 ) ) | |
| 7 | 5 6 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 8 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) | |
| 9 | ovex | ⊢ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 12 | 0cnd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = 0 ) → 0 ∈ ℂ ) | |
| 13 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 14 | elnn0 | ⊢ ( 𝑛 ∈ ℕ0 ↔ ( 𝑛 ∈ ℕ ∨ 𝑛 = 0 ) ) | |
| 15 | 13 14 | sylib | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ ∨ 𝑛 = 0 ) ) |
| 16 | 15 | ord | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ¬ 𝑛 ∈ ℕ → 𝑛 = 0 ) ) |
| 17 | 16 | con1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ¬ 𝑛 = 0 → 𝑛 ∈ ℕ ) ) |
| 18 | 17 | imp | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → 𝑛 ∈ ℕ ) |
| 19 | 18 | nnrecred | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 20 | 19 | recnd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 21 | 12 20 | ifclda | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ∈ ℂ ) |
| 22 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑛 ) ∈ ℂ ) | |
| 23 | 22 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑛 ) ∈ ℂ ) |
| 24 | 21 23 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ∈ ℂ ) |
| 25 | logtayllem | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) | |
| 26 | 1 2 11 24 25 | isumclim2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ⇝ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 27 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ ) | |
| 28 | 0cn | ⊢ 0 ∈ ℂ | |
| 29 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 30 | 29 | cnmetdval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝐴 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝐴 − 0 ) ) ) |
| 31 | 27 28 30 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝐴 − 0 ) ) ) |
| 32 | subid1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 ) | |
| 33 | 32 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 − 0 ) = 𝐴 ) |
| 34 | 33 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( 𝐴 − 0 ) ) = ( abs ‘ 𝐴 ) ) |
| 35 | 31 34 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ( abs ∘ − ) 0 ) = ( abs ‘ 𝐴 ) ) |
| 36 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 ) | |
| 37 | 35 36 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ( abs ∘ − ) 0 ) < 1 ) |
| 38 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 39 | 1xr | ⊢ 1 ∈ ℝ* | |
| 40 | elbl3 | ⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ) → ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝐴 ( abs ∘ − ) 0 ) < 1 ) ) | |
| 41 | 38 39 40 | mpanl12 | ⊢ ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝐴 ( abs ∘ − ) 0 ) < 1 ) ) |
| 42 | 28 27 41 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝐴 ( abs ∘ − ) 0 ) < 1 ) ) |
| 43 | 37 42 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 44 | tru | ⊢ ⊤ | |
| 45 | eqid | ⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) | |
| 46 | 0cnd | ⊢ ( ⊤ → 0 ∈ ℂ ) | |
| 47 | 39 | a1i | ⊢ ( ⊤ → 1 ∈ ℝ* ) |
| 48 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 49 | blssm | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) | |
| 50 | 38 28 39 49 | mp3an | ⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ |
| 51 | 50 | sseli | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑦 ∈ ℂ ) |
| 52 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 1 − 𝑦 ) ∈ ℂ ) | |
| 53 | 48 51 52 | sylancr | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 − 𝑦 ) ∈ ℂ ) |
| 54 | 51 | abscld | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
| 55 | 29 | cnmetdval | ⊢ ( ( 𝑦 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑦 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑦 − 0 ) ) ) |
| 56 | 51 28 55 | sylancl | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑦 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑦 − 0 ) ) ) |
| 57 | 51 | subid1d | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑦 − 0 ) = 𝑦 ) |
| 58 | 57 | fveq2d | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ ( 𝑦 − 0 ) ) = ( abs ‘ 𝑦 ) ) |
| 59 | 56 58 | eqtrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑦 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑦 ) ) |
| 60 | elbl3 | ⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑦 ( abs ∘ − ) 0 ) < 1 ) ) | |
| 61 | 38 39 60 | mpanl12 | ⊢ ( ( 0 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑦 ( abs ∘ − ) 0 ) < 1 ) ) |
| 62 | 28 51 61 | sylancr | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑦 ( abs ∘ − ) 0 ) < 1 ) ) |
| 63 | 62 | ibi | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑦 ( abs ∘ − ) 0 ) < 1 ) |
| 64 | 59 63 | eqbrtrrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ 𝑦 ) < 1 ) |
| 65 | 54 64 | gtned | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 1 ≠ ( abs ‘ 𝑦 ) ) |
| 66 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 67 | fveq2 | ⊢ ( 1 = 𝑦 → ( abs ‘ 1 ) = ( abs ‘ 𝑦 ) ) | |
| 68 | 66 67 | eqtr3id | ⊢ ( 1 = 𝑦 → 1 = ( abs ‘ 𝑦 ) ) |
| 69 | 68 | necon3i | ⊢ ( 1 ≠ ( abs ‘ 𝑦 ) → 1 ≠ 𝑦 ) |
| 70 | 65 69 | syl | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 1 ≠ 𝑦 ) |
| 71 | subeq0 | ⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 1 − 𝑦 ) = 0 ↔ 1 = 𝑦 ) ) | |
| 72 | 71 | necon3bid | ⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 1 − 𝑦 ) ≠ 0 ↔ 1 ≠ 𝑦 ) ) |
| 73 | 48 51 72 | sylancr | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 1 − 𝑦 ) ≠ 0 ↔ 1 ≠ 𝑦 ) ) |
| 74 | 70 73 | mpbird | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 − 𝑦 ) ≠ 0 ) |
| 75 | 53 74 | logcld | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( log ‘ ( 1 − 𝑦 ) ) ∈ ℂ ) |
| 76 | 75 | negcld | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → - ( log ‘ ( 1 − 𝑦 ) ) ∈ ℂ ) |
| 77 | 76 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → - ( log ‘ ( 1 − 𝑦 ) ) ∈ ℂ ) |
| 78 | 77 | fmpttd | ⊢ ( ⊤ → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) : ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ℂ ) |
| 79 | 51 | absge0d | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 0 ≤ ( abs ‘ 𝑦 ) ) |
| 80 | 54 | rexrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ 𝑦 ) ∈ ℝ* ) |
| 81 | peano2re | ⊢ ( ( abs ‘ 𝑦 ) ∈ ℝ → ( ( abs ‘ 𝑦 ) + 1 ) ∈ ℝ ) | |
| 82 | 54 81 | syl | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( abs ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
| 83 | 82 | rehalfcld | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ∈ ℝ ) |
| 84 | 83 | rexrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ∈ ℝ* ) |
| 85 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 86 | eqeq1 | ⊢ ( 𝑚 = 𝑗 → ( 𝑚 = 0 ↔ 𝑗 = 0 ) ) | |
| 87 | oveq2 | ⊢ ( 𝑚 = 𝑗 → ( 1 / 𝑚 ) = ( 1 / 𝑗 ) ) | |
| 88 | 86 87 | ifbieq2d | ⊢ ( 𝑚 = 𝑗 → if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) = if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) ) |
| 89 | eqid | ⊢ ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) | |
| 90 | c0ex | ⊢ 0 ∈ V | |
| 91 | ovex | ⊢ ( 1 / 𝑗 ) ∈ V | |
| 92 | 90 91 | ifex | ⊢ if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) ∈ V |
| 93 | 88 89 92 | fvmpt | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑗 ) = if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) ) |
| 94 | 93 | eqcomd | ⊢ ( 𝑗 ∈ ℕ0 → if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) = ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑗 ) ) |
| 95 | 94 | oveq1d | ⊢ ( 𝑗 ∈ ℕ0 → ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) = ( ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) |
| 96 | 95 | mpteq2ia | ⊢ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ0 ↦ ( ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) |
| 97 | 96 | mpteq2i | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) ) |
| 98 | 0cnd | ⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = 0 ) → 0 ∈ ℂ ) | |
| 99 | nn0cn | ⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) | |
| 100 | 99 | adantl | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℂ ) |
| 101 | neqne | ⊢ ( ¬ 𝑚 = 0 → 𝑚 ≠ 0 ) | |
| 102 | reccl | ⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) → ( 1 / 𝑚 ) ∈ ℂ ) | |
| 103 | 100 101 102 | syl2an | ⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℕ0 ) ∧ ¬ 𝑚 = 0 ) → ( 1 / 𝑚 ) ∈ ℂ ) |
| 104 | 98 103 | ifclda | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ0 ) → if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ∈ ℂ ) |
| 105 | 104 | fmpttd | ⊢ ( ⊤ → ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) : ℕ0 ⟶ ℂ ) |
| 106 | recn | ⊢ ( 𝑟 ∈ ℝ → 𝑟 ∈ ℂ ) | |
| 107 | oveq1 | ⊢ ( 𝑥 = 𝑟 → ( 𝑥 ↑ 𝑗 ) = ( 𝑟 ↑ 𝑗 ) ) | |
| 108 | 107 | oveq2d | ⊢ ( 𝑥 = 𝑟 → ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) = ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) |
| 109 | 108 | mpteq2dv | ⊢ ( 𝑥 = 𝑟 → ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) |
| 110 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) | |
| 111 | nn0ex | ⊢ ℕ0 ∈ V | |
| 112 | 111 | mptex | ⊢ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ∈ V |
| 113 | 109 110 112 | fvmpt | ⊢ ( 𝑟 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) |
| 114 | 106 113 | syl | ⊢ ( 𝑟 ∈ ℝ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) |
| 115 | 114 | eqcomd | ⊢ ( 𝑟 ∈ ℝ → ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) ) |
| 116 | 115 | seqeq3d | ⊢ ( 𝑟 ∈ ℝ → seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) = seq 0 ( + , ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) ) ) |
| 117 | 116 | eleq1d | ⊢ ( 𝑟 ∈ ℝ → ( seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ ) ) |
| 118 | 117 | rabbiia | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } = { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } |
| 119 | 118 | supeq1i | ⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 120 | 97 105 119 | radcnvcl | ⊢ ( ⊤ → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 121 | 85 120 | sselid | ⊢ ( ⊤ → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
| 122 | 44 121 | mp1i | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
| 123 | 1re | ⊢ 1 ∈ ℝ | |
| 124 | avglt1 | ⊢ ( ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝑦 ) < 1 ↔ ( abs ‘ 𝑦 ) < ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) ) | |
| 125 | 54 123 124 | sylancl | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( abs ‘ 𝑦 ) < 1 ↔ ( abs ‘ 𝑦 ) < ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) ) |
| 126 | 64 125 | mpbid | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ 𝑦 ) < ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) |
| 127 | 0red | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 0 ∈ ℝ ) | |
| 128 | 127 54 83 79 126 | lelttrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 0 < ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) |
| 129 | 127 83 128 | ltled | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 0 ≤ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) |
| 130 | 83 129 | absidd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) = ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) |
| 131 | 44 105 | mp1i | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) : ℕ0 ⟶ ℂ ) |
| 132 | 83 | recnd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ∈ ℂ ) |
| 133 | oveq1 | ⊢ ( 𝑥 = ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) → ( 𝑥 ↑ 𝑗 ) = ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) | |
| 134 | 133 | oveq2d | ⊢ ( 𝑥 = ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) → ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) = ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) |
| 135 | 134 | mpteq2dv | ⊢ ( 𝑥 = ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) → ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ) |
| 136 | 111 | mptex | ⊢ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ∈ V |
| 137 | 135 110 136 | fvmpt | ⊢ ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ) |
| 138 | 132 137 | syl | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ) |
| 139 | 138 | seqeq3d | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → seq 0 ( + , ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) ) = seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ) ) |
| 140 | avglt2 | ⊢ ( ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝑦 ) < 1 ↔ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) < 1 ) ) | |
| 141 | 54 123 140 | sylancl | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( abs ‘ 𝑦 ) < 1 ↔ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) < 1 ) ) |
| 142 | 64 141 | mpbid | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) < 1 ) |
| 143 | 130 142 | eqbrtrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) < 1 ) |
| 144 | logtayllem | ⊢ ( ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ∈ ℂ ∧ ( abs ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) < 1 ) → seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ) ∈ dom ⇝ ) | |
| 145 | 132 143 144 | syl2anc | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ↑ 𝑗 ) ) ) ) ∈ dom ⇝ ) |
| 146 | 139 145 | eqeltrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → seq 0 ( + , ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) ) ∈ dom ⇝ ) |
| 147 | 97 131 119 132 146 | radcnvle | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ) ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 148 | 130 147 | eqbrtrrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( ( abs ‘ 𝑦 ) + 1 ) / 2 ) ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 149 | 80 84 122 126 148 | xrltletrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ 𝑦 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 150 | 0re | ⊢ 0 ∈ ℝ | |
| 151 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) → ( ( abs ‘ 𝑦 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) | |
| 152 | 150 122 151 | sylancr | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( abs ‘ 𝑦 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 153 | 54 79 149 152 | mpbir3and | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ 𝑦 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) |
| 154 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 155 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 156 | elpreima | ⊢ ( abs Fn ℂ → ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) ) | |
| 157 | 154 155 156 | mp2b | ⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 158 | 51 153 157 | sylanbrc | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 159 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ⊆ dom abs | |
| 160 | 154 | fdmi | ⊢ dom abs = ℂ |
| 161 | 159 160 | sseqtri | ⊢ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ⊆ ℂ |
| 162 | 161 | sseli | ⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) → 𝑦 ∈ ℂ ) |
| 163 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝑗 ) = ( 𝑦 ↑ 𝑗 ) ) | |
| 164 | 163 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) = ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) |
| 165 | 164 | mpteq2dv | ⊢ ( 𝑥 = 𝑦 → ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ) |
| 166 | 111 | mptex | ⊢ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ∈ V |
| 167 | 165 110 166 | fvmpt | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ) |
| 168 | 167 | adantr | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ) |
| 169 | 168 | fveq1d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ‘ 𝑛 ) ) |
| 170 | eqeq1 | ⊢ ( 𝑗 = 𝑛 → ( 𝑗 = 0 ↔ 𝑛 = 0 ) ) | |
| 171 | oveq2 | ⊢ ( 𝑗 = 𝑛 → ( 1 / 𝑗 ) = ( 1 / 𝑛 ) ) | |
| 172 | 170 171 | ifbieq2d | ⊢ ( 𝑗 = 𝑛 → if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ) |
| 173 | oveq2 | ⊢ ( 𝑗 = 𝑛 → ( 𝑦 ↑ 𝑗 ) = ( 𝑦 ↑ 𝑛 ) ) | |
| 174 | 172 173 | oveq12d | ⊢ ( 𝑗 = 𝑛 → ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) |
| 175 | eqid | ⊢ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) | |
| 176 | ovex | ⊢ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ∈ V | |
| 177 | 174 175 176 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ‘ 𝑛 ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) |
| 178 | 177 | adantl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑦 ↑ 𝑗 ) ) ) ‘ 𝑛 ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) |
| 179 | 169 178 | eqtr2d | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) ) |
| 180 | 179 | sumeq2dv | ⊢ ( 𝑦 ∈ ℂ → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) ) |
| 181 | 162 180 | syl | ⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) ) |
| 182 | 181 | mpteq2ia | ⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) = ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) ) |
| 183 | eqid | ⊢ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) = ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) | |
| 184 | eqid | ⊢ if ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑧 ) + sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑧 ) + 1 ) ) = if ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑧 ) + sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑧 ) + 1 ) ) | |
| 185 | 97 182 105 119 183 184 | psercn | ⊢ ( ⊤ → ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ∈ ( ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) –cn→ ℂ ) ) |
| 186 | cncff | ⊢ ( ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ∈ ( ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) –cn→ ℂ ) → ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) : ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ⟶ ℂ ) | |
| 187 | 185 186 | syl | ⊢ ( ⊤ → ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) : ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ⟶ ℂ ) |
| 188 | 187 | fvmptelcdm | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ∈ ℂ ) |
| 189 | 158 188 | sylan2 | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ∈ ℂ ) |
| 190 | 189 | fmpttd | ⊢ ( ⊤ → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) : ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ℂ ) |
| 191 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 192 | 191 | a1i | ⊢ ( ⊤ → ℂ ∈ { ℝ , ℂ } ) |
| 193 | 75 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( log ‘ ( 1 − 𝑦 ) ) ∈ ℂ ) |
| 194 | ovexd | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) ∈ V ) | |
| 195 | 29 | cnmetdval | ⊢ ( ( 1 ∈ ℂ ∧ ( 1 − 𝑦 ) ∈ ℂ ) → ( 1 ( abs ∘ − ) ( 1 − 𝑦 ) ) = ( abs ‘ ( 1 − ( 1 − 𝑦 ) ) ) ) |
| 196 | 48 53 195 | sylancr | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 ( abs ∘ − ) ( 1 − 𝑦 ) ) = ( abs ‘ ( 1 − ( 1 − 𝑦 ) ) ) ) |
| 197 | nncan | ⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 1 − ( 1 − 𝑦 ) ) = 𝑦 ) | |
| 198 | 48 51 197 | sylancr | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 − ( 1 − 𝑦 ) ) = 𝑦 ) |
| 199 | 198 | fveq2d | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( abs ‘ ( 1 − ( 1 − 𝑦 ) ) ) = ( abs ‘ 𝑦 ) ) |
| 200 | 196 199 | eqtrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 ( abs ∘ − ) ( 1 − 𝑦 ) ) = ( abs ‘ 𝑦 ) ) |
| 201 | 200 64 | eqbrtrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 ( abs ∘ − ) ( 1 − 𝑦 ) ) < 1 ) |
| 202 | elbl | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( ( 1 − 𝑦 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( ( 1 − 𝑦 ) ∈ ℂ ∧ ( 1 ( abs ∘ − ) ( 1 − 𝑦 ) ) < 1 ) ) ) | |
| 203 | 38 48 39 202 | mp3an | ⊢ ( ( 1 − 𝑦 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( ( 1 − 𝑦 ) ∈ ℂ ∧ ( 1 ( abs ∘ − ) ( 1 − 𝑦 ) ) < 1 ) ) |
| 204 | 53 201 203 | sylanbrc | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 − 𝑦 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 205 | 204 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 1 − 𝑦 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 206 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 207 | 206 | a1i | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → - 1 ∈ ℂ ) |
| 208 | eqid | ⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) | |
| 209 | 208 | dvlog2lem | ⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 210 | 209 | sseli | ⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 211 | 210 | eldifad | ⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑥 ∈ ℂ ) |
| 212 | eqid | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 213 | 212 | logdmn0 | ⊢ ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝑥 ≠ 0 ) |
| 214 | 210 213 | syl | ⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑥 ≠ 0 ) |
| 215 | 211 214 | logcld | ⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 216 | 215 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 217 | ovexd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 1 / 𝑥 ) ∈ V ) | |
| 218 | simpr | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) | |
| 219 | 48 218 52 | sylancr | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → ( 1 − 𝑦 ) ∈ ℂ ) |
| 220 | 206 | a1i | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → - 1 ∈ ℂ ) |
| 221 | 1cnd | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → 1 ∈ ℂ ) | |
| 222 | 0cnd | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → 0 ∈ ℂ ) | |
| 223 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 224 | 192 223 | dvmptc | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 1 ) ) = ( 𝑦 ∈ ℂ ↦ 0 ) ) |
| 225 | 192 | dvmptid | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ 1 ) ) |
| 226 | 192 221 222 224 218 221 225 | dvmptsub | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 0 − 1 ) ) ) |
| 227 | df-neg | ⊢ - 1 = ( 0 − 1 ) | |
| 228 | 227 | mpteq2i | ⊢ ( 𝑦 ∈ ℂ ↦ - 1 ) = ( 𝑦 ∈ ℂ ↦ ( 0 − 1 ) ) |
| 229 | 226 228 | eqtr4di | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ - 1 ) ) |
| 230 | 50 | a1i | ⊢ ( ⊤ → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) |
| 231 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 232 | 231 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 233 | 232 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 234 | 231 | cnfldtopn | ⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 235 | 234 | blopn | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 236 | 38 28 39 235 | mp3an | ⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∈ ( TopOpen ‘ ℂfld ) |
| 237 | 236 | a1i | ⊢ ( ⊤ → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 238 | 192 219 220 229 230 233 231 237 | dvmptres | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - 1 ) ) |
| 239 | logf1o | ⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log | |
| 240 | f1of | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) | |
| 241 | 239 240 | ax-mp | ⊢ log : ( ℂ ∖ { 0 } ) ⟶ ran log |
| 242 | 212 | logdmss | ⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ { 0 } ) |
| 243 | 209 242 | sstri | ⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ℂ ∖ { 0 } ) |
| 244 | fssres | ⊢ ( ( log : ( ℂ ∖ { 0 } ) ⟶ ran log ∧ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ℂ ∖ { 0 } ) ) → ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) : ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ran log ) | |
| 245 | 241 243 244 | mp2an | ⊢ ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) : ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ran log |
| 246 | 245 | a1i | ⊢ ( ⊤ → ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) : ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ran log ) |
| 247 | 246 | feqmptd | ⊢ ( ⊤ → ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) = ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 𝑥 ) ) ) |
| 248 | fvres | ⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) | |
| 249 | 248 | mpteq2ia | ⊢ ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( log ‘ 𝑥 ) ) |
| 250 | 247 249 | eqtrdi | ⊢ ( ⊤ → ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) = ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( log ‘ 𝑥 ) ) ) |
| 251 | 250 | oveq2d | ⊢ ( ⊤ → ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) = ( ℂ D ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( log ‘ 𝑥 ) ) ) ) |
| 252 | 208 | dvlog2 | ⊢ ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) = ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / 𝑥 ) ) |
| 253 | 251 252 | eqtr3di | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / 𝑥 ) ) ) |
| 254 | fveq2 | ⊢ ( 𝑥 = ( 1 − 𝑦 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 1 − 𝑦 ) ) ) | |
| 255 | oveq2 | ⊢ ( 𝑥 = ( 1 − 𝑦 ) → ( 1 / 𝑥 ) = ( 1 / ( 1 − 𝑦 ) ) ) | |
| 256 | 192 192 205 207 216 217 238 253 254 255 | dvmptco | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( log ‘ ( 1 − 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) ) ) |
| 257 | 192 193 194 256 | dvmptneg | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) ) ) |
| 258 | 53 74 | reccld | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 / ( 1 − 𝑦 ) ) ∈ ℂ ) |
| 259 | mulcom | ⊢ ( ( ( 1 / ( 1 − 𝑦 ) ) ∈ ℂ ∧ - 1 ∈ ℂ ) → ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) = ( - 1 · ( 1 / ( 1 − 𝑦 ) ) ) ) | |
| 260 | 258 206 259 | sylancl | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) = ( - 1 · ( 1 / ( 1 − 𝑦 ) ) ) ) |
| 261 | 258 | mulm1d | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( - 1 · ( 1 / ( 1 − 𝑦 ) ) ) = - ( 1 / ( 1 − 𝑦 ) ) ) |
| 262 | 260 261 | eqtrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) = - ( 1 / ( 1 − 𝑦 ) ) ) |
| 263 | 262 | negeqd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → - ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) = - - ( 1 / ( 1 − 𝑦 ) ) ) |
| 264 | 258 | negnegd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → - - ( 1 / ( 1 − 𝑦 ) ) = ( 1 / ( 1 − 𝑦 ) ) ) |
| 265 | 263 264 | eqtrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → - ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) = ( 1 / ( 1 − 𝑦 ) ) ) |
| 266 | 265 | mpteq2ia | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( ( 1 / ( 1 − 𝑦 ) ) · - 1 ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) |
| 267 | 257 266 | eqtrdi | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) ) |
| 268 | 267 | dmeqd | ⊢ ( ⊤ → dom ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ) = dom ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) ) |
| 269 | dmmptg | ⊢ ( ∀ 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ( 1 / ( 1 − 𝑦 ) ) ∈ V → dom ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) | |
| 270 | ovexd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 1 / ( 1 − 𝑦 ) ) ∈ V ) | |
| 271 | 269 270 | mprg | ⊢ dom ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) |
| 272 | 268 271 | eqtrdi | ⊢ ( ⊤ → dom ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 273 | sumex | ⊢ Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ∈ V | |
| 274 | 273 | a1i | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) → Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ∈ V ) |
| 275 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) | |
| 276 | 275 | cbvsumv | ⊢ Σ 𝑛 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑛 ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) |
| 277 | 181 276 | eqtrdi | ⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = Σ 𝑘 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) |
| 278 | 277 | mpteq2ia | ⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) = ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑘 ∈ ℕ0 ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑥 ↑ 𝑗 ) ) ) ) ‘ 𝑦 ) ‘ 𝑘 ) ) |
| 279 | eqid | ⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑧 ) + if ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑧 ) + sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑧 ) + 1 ) ) ) / 2 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( ( abs ‘ 𝑧 ) + if ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑧 ) + sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑧 ) + 1 ) ) ) / 2 ) ) | |
| 280 | 97 278 105 119 183 184 279 | pserdv2 | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ) = ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 281 | 158 | ssriv | ⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) |
| 282 | 281 | a1i | ⊢ ( ⊤ → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑗 ∈ ℕ0 ↦ ( if ( 𝑗 = 0 , 0 , ( 1 / 𝑗 ) ) · ( 𝑟 ↑ 𝑗 ) ) ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 283 | 192 188 274 280 282 233 231 237 | dvmptres | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 284 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 285 | 284 | adantl | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 286 | eqeq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 = 0 ↔ 𝑛 = 0 ) ) | |
| 287 | oveq2 | ⊢ ( 𝑚 = 𝑛 → ( 1 / 𝑚 ) = ( 1 / 𝑛 ) ) | |
| 288 | 286 287 | ifbieq2d | ⊢ ( 𝑚 = 𝑛 → if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ) |
| 289 | ovex | ⊢ ( 1 / 𝑛 ) ∈ V | |
| 290 | 90 289 | ifex | ⊢ if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ∈ V |
| 291 | 288 89 290 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ) |
| 292 | 285 291 | syl | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) ) |
| 293 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 294 | 293 | adantl | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 295 | 294 | neneqd | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ¬ 𝑛 = 0 ) |
| 296 | 295 | iffalsed | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) = ( 1 / 𝑛 ) ) |
| 297 | 292 296 | eqtrd | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) = ( 1 / 𝑛 ) ) |
| 298 | 297 | oveq2d | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) = ( 𝑛 · ( 1 / 𝑛 ) ) ) |
| 299 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 300 | 299 | adantl | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 301 | 300 294 | recidd | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · ( 1 / 𝑛 ) ) = 1 ) |
| 302 | 298 301 | eqtrd | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) = 1 ) |
| 303 | 302 | oveq1d | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) = ( 1 · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) |
| 304 | nnm1nn0 | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) | |
| 305 | expcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑛 − 1 ) ∈ ℕ0 ) → ( 𝑦 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) | |
| 306 | 51 304 305 | syl2an | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑦 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 307 | 306 | mullidd | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( 1 · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) = ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) |
| 308 | 303 307 | eqtrd | ⊢ ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) = ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) |
| 309 | 308 | sumeq2dv | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) = Σ 𝑛 ∈ ℕ ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) |
| 310 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 311 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 312 | 311 | fveq2i | ⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 313 | 310 312 | eqtri | ⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 314 | oveq1 | ⊢ ( 𝑛 = ( 1 + 𝑚 ) → ( 𝑛 − 1 ) = ( ( 1 + 𝑚 ) − 1 ) ) | |
| 315 | 314 | oveq2d | ⊢ ( 𝑛 = ( 1 + 𝑚 ) → ( 𝑦 ↑ ( 𝑛 − 1 ) ) = ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) |
| 316 | 1zzd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 1 ∈ ℤ ) | |
| 317 | 0zd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 0 ∈ ℤ ) | |
| 318 | 1 313 315 316 317 306 | isumshft | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → Σ 𝑛 ∈ ℕ ( 𝑦 ↑ ( 𝑛 − 1 ) ) = Σ 𝑚 ∈ ℕ0 ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) ) |
| 319 | pncan2 | ⊢ ( ( 1 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( 1 + 𝑚 ) − 1 ) = 𝑚 ) | |
| 320 | 48 99 319 | sylancr | ⊢ ( 𝑚 ∈ ℕ0 → ( ( 1 + 𝑚 ) − 1 ) = 𝑚 ) |
| 321 | 320 | oveq2d | ⊢ ( 𝑚 ∈ ℕ0 → ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) = ( 𝑦 ↑ 𝑚 ) ) |
| 322 | 321 | sumeq2i | ⊢ Σ 𝑚 ∈ ℕ0 ( 𝑦 ↑ ( ( 1 + 𝑚 ) − 1 ) ) = Σ 𝑚 ∈ ℕ0 ( 𝑦 ↑ 𝑚 ) |
| 323 | 318 322 | eqtrdi | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → Σ 𝑛 ∈ ℕ ( 𝑦 ↑ ( 𝑛 − 1 ) ) = Σ 𝑚 ∈ ℕ0 ( 𝑦 ↑ 𝑚 ) ) |
| 324 | geoisum | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) < 1 ) → Σ 𝑚 ∈ ℕ0 ( 𝑦 ↑ 𝑚 ) = ( 1 / ( 1 − 𝑦 ) ) ) | |
| 325 | 51 64 324 | syl2anc | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → Σ 𝑚 ∈ ℕ0 ( 𝑦 ↑ 𝑚 ) = ( 1 / ( 1 − 𝑦 ) ) ) |
| 326 | 309 323 325 | 3eqtrd | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) = ( 1 / ( 1 − 𝑦 ) ) ) |
| 327 | 326 | mpteq2ia | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ ( ( 𝑛 · ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 0 , ( 1 / 𝑚 ) ) ) ‘ 𝑛 ) ) · ( 𝑦 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) |
| 328 | 283 327 | eqtrdi | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / ( 1 − 𝑦 ) ) ) ) |
| 329 | 267 328 | eqtr4d | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ) = ( ℂ D ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ) ) |
| 330 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 331 | blcntr | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ+ ) → 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) | |
| 332 | 38 28 330 331 | mp3an | ⊢ 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) |
| 333 | 332 | a1i | ⊢ ( ⊤ → 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 334 | oveq2 | ⊢ ( 𝑦 = 0 → ( 1 − 𝑦 ) = ( 1 − 0 ) ) | |
| 335 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 336 | 334 335 | eqtrdi | ⊢ ( 𝑦 = 0 → ( 1 − 𝑦 ) = 1 ) |
| 337 | 336 | fveq2d | ⊢ ( 𝑦 = 0 → ( log ‘ ( 1 − 𝑦 ) ) = ( log ‘ 1 ) ) |
| 338 | log1 | ⊢ ( log ‘ 1 ) = 0 | |
| 339 | 337 338 | eqtrdi | ⊢ ( 𝑦 = 0 → ( log ‘ ( 1 − 𝑦 ) ) = 0 ) |
| 340 | 339 | negeqd | ⊢ ( 𝑦 = 0 → - ( log ‘ ( 1 − 𝑦 ) ) = - 0 ) |
| 341 | neg0 | ⊢ - 0 = 0 | |
| 342 | 340 341 | eqtrdi | ⊢ ( 𝑦 = 0 → - ( log ‘ ( 1 − 𝑦 ) ) = 0 ) |
| 343 | eqid | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) | |
| 344 | 342 343 90 | fvmpt | ⊢ ( 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ‘ 0 ) = 0 ) |
| 345 | 332 344 | mp1i | ⊢ ( ⊤ → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ‘ 0 ) = 0 ) |
| 346 | oveq1 | ⊢ ( 0 = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) → ( 0 · ( 𝑦 ↑ 𝑛 ) ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) | |
| 347 | 346 | eqeq1d | ⊢ ( 0 = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) → ( ( 0 · ( 𝑦 ↑ 𝑛 ) ) = 0 ↔ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = 0 ) ) |
| 348 | oveq1 | ⊢ ( ( 1 / 𝑛 ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) → ( ( 1 / 𝑛 ) · ( 𝑦 ↑ 𝑛 ) ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) | |
| 349 | 348 | eqeq1d | ⊢ ( ( 1 / 𝑛 ) = if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) → ( ( ( 1 / 𝑛 ) · ( 𝑦 ↑ 𝑛 ) ) = 0 ↔ ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = 0 ) ) |
| 350 | simpll | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = 0 ) → 𝑦 = 0 ) | |
| 351 | 350 28 | eqeltrdi | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = 0 ) → 𝑦 ∈ ℂ ) |
| 352 | simplr | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = 0 ) → 𝑛 ∈ ℕ0 ) | |
| 353 | 351 352 | expcld | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = 0 ) → ( 𝑦 ↑ 𝑛 ) ∈ ℂ ) |
| 354 | 353 | mul02d | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑛 = 0 ) → ( 0 · ( 𝑦 ↑ 𝑛 ) ) = 0 ) |
| 355 | simpll | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → 𝑦 = 0 ) | |
| 356 | 355 | oveq1d | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 𝑦 ↑ 𝑛 ) = ( 0 ↑ 𝑛 ) ) |
| 357 | simpr | ⊢ ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 358 | 357 14 | sylib | ⊢ ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ ∨ 𝑛 = 0 ) ) |
| 359 | 358 | ord | ⊢ ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) → ( ¬ 𝑛 ∈ ℕ → 𝑛 = 0 ) ) |
| 360 | 359 | con1d | ⊢ ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) → ( ¬ 𝑛 = 0 → 𝑛 ∈ ℕ ) ) |
| 361 | 360 | imp | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → 𝑛 ∈ ℕ ) |
| 362 | 361 | 0expd | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 0 ↑ 𝑛 ) = 0 ) |
| 363 | 356 362 | eqtrd | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 𝑦 ↑ 𝑛 ) = 0 ) |
| 364 | 363 | oveq2d | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( ( 1 / 𝑛 ) · ( 𝑦 ↑ 𝑛 ) ) = ( ( 1 / 𝑛 ) · 0 ) ) |
| 365 | 361 | nnrecred | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 366 | 365 | recnd | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 367 | 366 | mul01d | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( ( 1 / 𝑛 ) · 0 ) = 0 ) |
| 368 | 364 367 | eqtrd | ⊢ ( ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) ∧ ¬ 𝑛 = 0 ) → ( ( 1 / 𝑛 ) · ( 𝑦 ↑ 𝑛 ) ) = 0 ) |
| 369 | 347 349 354 368 | ifbothda | ⊢ ( ( 𝑦 = 0 ∧ 𝑛 ∈ ℕ0 ) → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = 0 ) |
| 370 | 369 | sumeq2dv | ⊢ ( 𝑦 = 0 → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 0 ) |
| 371 | 1 | eqimssi | ⊢ ℕ0 ⊆ ( ℤ≥ ‘ 0 ) |
| 372 | 371 | orci | ⊢ ( ℕ0 ⊆ ( ℤ≥ ‘ 0 ) ∨ ℕ0 ∈ Fin ) |
| 373 | sumz | ⊢ ( ( ℕ0 ⊆ ( ℤ≥ ‘ 0 ) ∨ ℕ0 ∈ Fin ) → Σ 𝑛 ∈ ℕ0 0 = 0 ) | |
| 374 | 372 373 | ax-mp | ⊢ Σ 𝑛 ∈ ℕ0 0 = 0 |
| 375 | 370 374 | eqtrdi | ⊢ ( 𝑦 = 0 → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = 0 ) |
| 376 | eqid | ⊢ ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) | |
| 377 | 375 376 90 | fvmpt | ⊢ ( 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ‘ 0 ) = 0 ) |
| 378 | 332 377 | mp1i | ⊢ ( ⊤ → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ‘ 0 ) = 0 ) |
| 379 | 345 378 | eqtr4d | ⊢ ( ⊤ → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ‘ 0 ) = ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ‘ 0 ) ) |
| 380 | 45 46 47 78 190 272 329 333 379 | dv11cn | ⊢ ( ⊤ → ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) = ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ) |
| 381 | 380 | fveq1d | ⊢ ( ⊤ → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ‘ 𝐴 ) = ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ‘ 𝐴 ) ) |
| 382 | 44 381 | mp1i | ⊢ ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ‘ 𝐴 ) = ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ‘ 𝐴 ) ) |
| 383 | oveq2 | ⊢ ( 𝑦 = 𝐴 → ( 1 − 𝑦 ) = ( 1 − 𝐴 ) ) | |
| 384 | 383 | fveq2d | ⊢ ( 𝑦 = 𝐴 → ( log ‘ ( 1 − 𝑦 ) ) = ( log ‘ ( 1 − 𝐴 ) ) ) |
| 385 | 384 | negeqd | ⊢ ( 𝑦 = 𝐴 → - ( log ‘ ( 1 − 𝑦 ) ) = - ( log ‘ ( 1 − 𝐴 ) ) ) |
| 386 | negex | ⊢ - ( log ‘ ( 1 − 𝐴 ) ) ∈ V | |
| 387 | 385 343 386 | fvmpt | ⊢ ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ - ( log ‘ ( 1 − 𝑦 ) ) ) ‘ 𝐴 ) = - ( log ‘ ( 1 − 𝐴 ) ) ) |
| 388 | oveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑛 ) ) | |
| 389 | 388 | oveq2d | ⊢ ( 𝑦 = 𝐴 → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 390 | 389 | sumeq2sdv | ⊢ ( 𝑦 = 𝐴 → Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 391 | sumex | ⊢ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ∈ V | |
| 392 | 390 376 391 | fvmpt | ⊢ ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑦 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝑦 ↑ 𝑛 ) ) ) ‘ 𝐴 ) = Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 393 | 382 387 392 | 3eqtr3d | ⊢ ( 𝐴 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → - ( log ‘ ( 1 − 𝐴 ) ) = Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 394 | 43 393 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → - ( log ‘ ( 1 − 𝐴 ) ) = Σ 𝑛 ∈ ℕ0 ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 395 | 26 394 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ⇝ - ( log ‘ ( 1 − 𝐴 ) ) ) |
| 396 | seqex | ⊢ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ∈ V | |
| 397 | 396 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ∈ V ) |
| 398 | seqex | ⊢ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ∈ V | |
| 399 | 398 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ∈ V ) |
| 400 | 1zzd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℤ ) | |
| 401 | elnnuz | ⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 402 | fvres | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → ( ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ↾ ( ℤ≥ ‘ 1 ) ) ‘ 𝑛 ) = ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) ) | |
| 403 | 401 402 | sylbi | ⊢ ( 𝑛 ∈ ℕ → ( ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ↾ ( ℤ≥ ‘ 1 ) ) ‘ 𝑛 ) = ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) ) |
| 404 | 403 | eqcomd | ⊢ ( 𝑛 ∈ ℕ → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) = ( ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ↾ ( ℤ≥ ‘ 1 ) ) ‘ 𝑛 ) ) |
| 405 | addlid | ⊢ ( 𝑛 ∈ ℂ → ( 0 + 𝑛 ) = 𝑛 ) | |
| 406 | 405 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℂ ) → ( 0 + 𝑛 ) = 𝑛 ) |
| 407 | 0cnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ∈ ℂ ) | |
| 408 | 1eluzge0 | ⊢ 1 ∈ ( ℤ≥ ‘ 0 ) | |
| 409 | 408 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ( ℤ≥ ‘ 0 ) ) |
| 410 | 0cnd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 = 0 ) → 0 ∈ ℂ ) | |
| 411 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 412 | 411 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 413 | neqne | ⊢ ( ¬ 𝑘 = 0 → 𝑘 ≠ 0 ) | |
| 414 | reccl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) → ( 1 / 𝑘 ) ∈ ℂ ) | |
| 415 | 412 413 414 | syl2an | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) ∧ ¬ 𝑘 = 0 ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 416 | 410 415 | ifclda | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) ∈ ℂ ) |
| 417 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 418 | 417 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 419 | 416 418 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
| 420 | 419 | fmpttd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ) |
| 421 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 422 | ffvelcdm | ⊢ ( ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ∧ 1 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 1 ) ∈ ℂ ) | |
| 423 | 420 421 422 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 1 ) ∈ ℂ ) |
| 424 | elfz1eq | ⊢ ( 𝑛 ∈ ( 0 ... 0 ) → 𝑛 = 0 ) | |
| 425 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 426 | 425 | oveq2i | ⊢ ( 0 ... ( 1 − 1 ) ) = ( 0 ... 0 ) |
| 427 | 424 426 | eleq2s | ⊢ ( 𝑛 ∈ ( 0 ... ( 1 − 1 ) ) → 𝑛 = 0 ) |
| 428 | 427 | fveq2d | ⊢ ( 𝑛 ∈ ( 0 ... ( 1 − 1 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 0 ) ) |
| 429 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 430 | iftrue | ⊢ ( 𝑘 = 0 → if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) = 0 ) | |
| 431 | oveq2 | ⊢ ( 𝑘 = 0 → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ 0 ) ) | |
| 432 | 430 431 | oveq12d | ⊢ ( 𝑘 = 0 → ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) = ( 0 · ( 𝐴 ↑ 0 ) ) ) |
| 433 | ovex | ⊢ ( 0 · ( 𝐴 ↑ 0 ) ) ∈ V | |
| 434 | 432 8 433 | fvmpt | ⊢ ( 0 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 0 ) = ( 0 · ( 𝐴 ↑ 0 ) ) ) |
| 435 | 429 434 | ax-mp | ⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 0 ) = ( 0 · ( 𝐴 ↑ 0 ) ) |
| 436 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐴 ↑ 0 ) ∈ ℂ ) | |
| 437 | 27 429 436 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ↑ 0 ) ∈ ℂ ) |
| 438 | 437 | mul02d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 0 · ( 𝐴 ↑ 0 ) ) = 0 ) |
| 439 | 435 438 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 0 ) = 0 ) |
| 440 | 428 439 | sylan9eqr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ( 0 ... ( 1 − 1 ) ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = 0 ) |
| 441 | 406 407 409 423 440 | seqid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ↾ ( ℤ≥ ‘ 1 ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ) |
| 442 | 293 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 443 | 442 | neneqd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ¬ 𝑛 = 0 ) |
| 444 | 443 | iffalsed | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) = ( 1 / 𝑛 ) ) |
| 445 | 444 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) = ( ( 1 / 𝑛 ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 446 | 284 23 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ↑ 𝑛 ) ∈ ℂ ) |
| 447 | 299 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 448 | 446 447 442 | divrec2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) = ( ( 1 / 𝑛 ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 449 | 445 448 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) = ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) |
| 450 | 284 11 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( if ( 𝑛 = 0 , 0 , ( 1 / 𝑛 ) ) · ( 𝐴 ↑ 𝑛 ) ) ) |
| 451 | id | ⊢ ( 𝑘 = 𝑛 → 𝑘 = 𝑛 ) | |
| 452 | 6 451 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) = ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) |
| 453 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) | |
| 454 | ovex | ⊢ ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ∈ V | |
| 455 | 452 453 454 | fvmpt | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) = ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) |
| 456 | 455 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) = ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) |
| 457 | 449 450 456 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) ) |
| 458 | 401 457 | sylan2br | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ‘ 𝑛 ) ) |
| 459 | 400 458 | seqfeq | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ) |
| 460 | 441 459 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ↾ ( ℤ≥ ‘ 1 ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ) |
| 461 | 460 | fveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ↾ ( ℤ≥ ‘ 1 ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ‘ 𝑛 ) ) |
| 462 | 404 461 | sylan9eqr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ‘ 𝑛 ) ) |
| 463 | 310 397 399 400 462 | climeq | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , 0 , ( 1 / 𝑘 ) ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ⇝ - ( log ‘ ( 1 − 𝐴 ) ) ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ⇝ - ( log ‘ ( 1 − 𝐴 ) ) ) ) |
| 464 | 395 463 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ⇝ - ( log ‘ ( 1 − 𝐴 ) ) ) |