This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007) (Revised by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1m1nn | |- ( N e. NN -> ( N = 1 \/ ( N - 1 ) e. NN ) ) |
|
| 2 | oveq1 | |- ( N = 1 -> ( N - 1 ) = ( 1 - 1 ) ) |
|
| 3 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 4 | 2 3 | eqtrdi | |- ( N = 1 -> ( N - 1 ) = 0 ) |
| 5 | 4 | orim1i | |- ( ( N = 1 \/ ( N - 1 ) e. NN ) -> ( ( N - 1 ) = 0 \/ ( N - 1 ) e. NN ) ) |
| 6 | 1 5 | syl | |- ( N e. NN -> ( ( N - 1 ) = 0 \/ ( N - 1 ) e. NN ) ) |
| 7 | 6 | orcomd | |- ( N e. NN -> ( ( N - 1 ) e. NN \/ ( N - 1 ) = 0 ) ) |
| 8 | elnn0 | |- ( ( N - 1 ) e. NN0 <-> ( ( N - 1 ) e. NN \/ ( N - 1 ) = 0 ) ) |
|
| 9 | 7 8 | sylibr | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |