This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptid.1 | |- ( ph -> S e. { RR , CC } ) |
|
| dvmptc.2 | |- ( ph -> A e. CC ) |
||
| Assertion | dvmptc | |- ( ph -> ( S _D ( x e. S |-> A ) ) = ( x e. S |-> 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptid.1 | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmptc.2 | |- ( ph -> A e. CC ) |
|
| 3 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 4 | 3 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 5 | toponmax | |- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
|
| 6 | 4 5 | mp1i | |- ( ph -> CC e. ( TopOpen ` CCfld ) ) |
| 7 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 8 | 1 7 | syl | |- ( ph -> S C_ CC ) |
| 9 | dfss2 | |- ( S C_ CC <-> ( S i^i CC ) = S ) |
|
| 10 | 8 9 | sylib | |- ( ph -> ( S i^i CC ) = S ) |
| 11 | 2 | adantr | |- ( ( ph /\ x e. CC ) -> A e. CC ) |
| 12 | 0cnd | |- ( ( ph /\ x e. CC ) -> 0 e. CC ) |
|
| 13 | dvconst | |- ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
|
| 14 | 2 13 | syl | |- ( ph -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
| 15 | fconstmpt | |- ( CC X. { A } ) = ( x e. CC |-> A ) |
|
| 16 | 15 | oveq2i | |- ( CC _D ( CC X. { A } ) ) = ( CC _D ( x e. CC |-> A ) ) |
| 17 | fconstmpt | |- ( CC X. { 0 } ) = ( x e. CC |-> 0 ) |
|
| 18 | 14 16 17 | 3eqtr3g | |- ( ph -> ( CC _D ( x e. CC |-> A ) ) = ( x e. CC |-> 0 ) ) |
| 19 | 3 1 6 10 11 12 18 | dvmptres3 | |- ( ph -> ( S _D ( x e. S |-> A ) ) = ( x e. S |-> 0 ) ) |