This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of the complex logarithm function on the open unit ball centered at 1 , a sometimes easier region to work with than the CC \ ( -oo , 0 ] of dvlog . (Contributed by Mario Carneiro, 1-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvlog2.s | |- S = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
|
| Assertion | dvlog2 | |- ( CC _D ( log |` S ) ) = ( x e. S |-> ( 1 / x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvlog2.s | |- S = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
|
| 2 | ssid | |- CC C_ CC |
|
| 3 | logf1o | |- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
|
| 4 | f1of | |- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
|
| 5 | 3 4 | ax-mp | |- log : ( CC \ { 0 } ) --> ran log |
| 6 | logrncn | |- ( x e. ran log -> x e. CC ) |
|
| 7 | 6 | ssriv | |- ran log C_ CC |
| 8 | fss | |- ( ( log : ( CC \ { 0 } ) --> ran log /\ ran log C_ CC ) -> log : ( CC \ { 0 } ) --> CC ) |
|
| 9 | 5 7 8 | mp2an | |- log : ( CC \ { 0 } ) --> CC |
| 10 | eqid | |- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
|
| 11 | 10 | logdmss | |- ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) |
| 12 | fssres | |- ( ( log : ( CC \ { 0 } ) --> CC /\ ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) ) -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) --> CC ) |
|
| 13 | 9 11 12 | mp2an | |- ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) --> CC |
| 14 | difss | |- ( CC \ ( -oo (,] 0 ) ) C_ CC |
|
| 15 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 16 | ax-1cn | |- 1 e. CC |
|
| 17 | 1xr | |- 1 e. RR* |
|
| 18 | blssm | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR* ) -> ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) |
|
| 19 | 15 16 17 18 | mp3an | |- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC |
| 20 | 1 19 | eqsstri | |- S C_ CC |
| 21 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 22 | 21 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 23 | 22 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 24 | 21 23 | dvres | |- ( ( ( CC C_ CC /\ ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) --> CC ) /\ ( ( CC \ ( -oo (,] 0 ) ) C_ CC /\ S C_ CC ) ) -> ( CC _D ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) |` S ) ) = ( ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` S ) ) ) |
| 25 | 2 13 14 20 24 | mp4an | |- ( CC _D ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) |` S ) ) = ( ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` S ) ) |
| 26 | 1 | dvlog2lem | |- S C_ ( CC \ ( -oo (,] 0 ) ) |
| 27 | resabs1 | |- ( S C_ ( CC \ ( -oo (,] 0 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) |` S ) = ( log |` S ) ) |
|
| 28 | 26 27 | ax-mp | |- ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) |` S ) = ( log |` S ) |
| 29 | 28 | oveq2i | |- ( CC _D ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) |` S ) ) = ( CC _D ( log |` S ) ) |
| 30 | 10 | dvlog | |- ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) = ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / x ) ) |
| 31 | 21 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 32 | 21 | cnfldtopn | |- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 33 | 32 | blopn | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR* ) -> ( 1 ( ball ` ( abs o. - ) ) 1 ) e. ( TopOpen ` CCfld ) ) |
| 34 | 15 16 17 33 | mp3an | |- ( 1 ( ball ` ( abs o. - ) ) 1 ) e. ( TopOpen ` CCfld ) |
| 35 | 1 34 | eqeltri | |- S e. ( TopOpen ` CCfld ) |
| 36 | isopn3i | |- ( ( ( TopOpen ` CCfld ) e. Top /\ S e. ( TopOpen ` CCfld ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` S ) = S ) |
|
| 37 | 31 35 36 | mp2an | |- ( ( int ` ( TopOpen ` CCfld ) ) ` S ) = S |
| 38 | 30 37 | reseq12i | |- ( ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` S ) ) = ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / x ) ) |` S ) |
| 39 | 25 29 38 | 3eqtr3i | |- ( CC _D ( log |` S ) ) = ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / x ) ) |` S ) |
| 40 | resmpt | |- ( S C_ ( CC \ ( -oo (,] 0 ) ) -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / x ) ) |` S ) = ( x e. S |-> ( 1 / x ) ) ) |
|
| 41 | 26 40 | ax-mp | |- ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / x ) ) |` S ) = ( x e. S |-> ( 1 / x ) ) |
| 42 | 39 41 | eqtri | |- ( CC _D ( log |` S ) ) = ( x e. S |-> ( 1 / x ) ) |