This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The radius of convergence R of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| radcnv.a | |- ( ph -> A : NN0 --> CC ) |
||
| radcnv.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
||
| Assertion | radcnvcl | |- ( ph -> R e. ( 0 [,] +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | radcnv.a | |- ( ph -> A : NN0 --> CC ) |
|
| 3 | radcnv.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 4 | ssrab2 | |- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR |
|
| 5 | ressxr | |- RR C_ RR* |
|
| 6 | 4 5 | sstri | |- { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* |
| 7 | supxrcl | |- ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* -> sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
|
| 8 | 6 7 | mp1i | |- ( ph -> sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
| 9 | 3 8 | eqeltrid | |- ( ph -> R e. RR* ) |
| 10 | 1 2 | radcnv0 | |- ( ph -> 0 e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) |
| 11 | supxrub | |- ( ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } C_ RR* /\ 0 e. { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } ) -> 0 <_ sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) ) |
|
| 12 | 6 10 11 | sylancr | |- ( ph -> 0 <_ sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) ) |
| 13 | 12 3 | breqtrrdi | |- ( ph -> 0 <_ R ) |
| 14 | pnfge | |- ( R e. RR* -> R <_ +oo ) |
|
| 15 | 9 14 | syl | |- ( ph -> R <_ +oo ) |
| 16 | 0xr | |- 0 e. RR* |
|
| 17 | pnfxr | |- +oo e. RR* |
|
| 18 | elicc1 | |- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) ) |
|
| 19 | 16 17 18 | mp2an | |- ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) |
| 20 | 9 13 15 19 | syl3anbrc | |- ( ph -> R e. ( 0 [,] +oo ) ) |