This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of a locally compact space and a compactly generated Hausdorff space is compactly generated. (The condition on S can also be replaced with either "compactly generated weak Hausdorff (CGWH)" or "compact Hausdorff-ly generated (CHG)", where WH means that all images of compact Hausdorff spaces are closed and CHG means that a set is open iff it is open in all compact Hausdorff spaces.) (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txkgen | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) → ( 𝑅 ×t 𝑆 ) ∈ ran 𝑘Gen ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nllytop | ⊢ ( 𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ Top ) | |
| 2 | elinel1 | ⊢ ( 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) → 𝑆 ∈ ran 𝑘Gen ) | |
| 3 | kgentop | ⊢ ( 𝑆 ∈ ran 𝑘Gen → 𝑆 ∈ Top ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) → 𝑆 ∈ Top ) |
| 5 | txtop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) | |
| 6 | 1 4 5 | syl2an | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 7 | simplll | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑅 ∈ 𝑛-Locally Comp ) | |
| 8 | eqid | ⊢ ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) = ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 9 | 8 | mptpreima | ⊢ ( ◡ ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) “ 𝑥 ) = { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } |
| 10 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑅 ∈ Top ) |
| 11 | toptopon2 | ⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) | |
| 12 | 10 11 | sylib | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
| 13 | idcn | ⊢ ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) → ( I ↾ ∪ 𝑅 ) ∈ ( 𝑅 Cn 𝑅 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( I ↾ ∪ 𝑅 ) ∈ ( 𝑅 Cn 𝑅 ) ) |
| 15 | simpllr | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) | |
| 16 | 15 4 | syl | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑆 ∈ Top ) |
| 17 | toptopon2 | ⊢ ( 𝑆 ∈ Top ↔ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) | |
| 18 | 16 17 | sylib | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
| 19 | simpr | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) | |
| 20 | simplr | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) | |
| 21 | elunii | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) → 𝑦 ∈ ∪ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ∪ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 23 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 24 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 25 | 23 24 | txuni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 26 | 10 16 25 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 27 | 10 16 5 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 28 | eqid | ⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) | |
| 29 | 28 | kgenuni | ⊢ ( ( 𝑅 ×t 𝑆 ) ∈ Top → ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 30 | 27 29 | syl | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 31 | 26 30 | eqtrd | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 32 | 22 31 | eleqtrrd | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 33 | xp2nd | ⊢ ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) | |
| 34 | 32 33 | syl | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) |
| 35 | cnconst2 | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ∧ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ∧ ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) → ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ∈ ( 𝑅 Cn 𝑆 ) ) | |
| 36 | 12 18 34 35 | syl3anc | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ∈ ( 𝑅 Cn 𝑆 ) ) |
| 37 | fvresi | ⊢ ( 𝑡 ∈ ∪ 𝑅 → ( ( I ↾ ∪ 𝑅 ) ‘ 𝑡 ) = 𝑡 ) | |
| 38 | fvex | ⊢ ( 2nd ‘ 𝑦 ) ∈ V | |
| 39 | 38 | fvconst2 | ⊢ ( 𝑡 ∈ ∪ 𝑅 → ( ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ‘ 𝑡 ) = ( 2nd ‘ 𝑦 ) ) |
| 40 | 37 39 | opeq12d | ⊢ ( 𝑡 ∈ ∪ 𝑅 → 〈 ( ( I ↾ ∪ 𝑅 ) ‘ 𝑡 ) , ( ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ‘ 𝑡 ) 〉 = 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) |
| 41 | 40 | mpteq2ia | ⊢ ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 ( ( I ↾ ∪ 𝑅 ) ‘ 𝑡 ) , ( ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ‘ 𝑡 ) 〉 ) = ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) |
| 42 | 41 | eqcomi | ⊢ ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) = ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 ( ( I ↾ ∪ 𝑅 ) ‘ 𝑡 ) , ( ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ‘ 𝑡 ) 〉 ) |
| 43 | 23 42 | txcnmpt | ⊢ ( ( ( I ↾ ∪ 𝑅 ) ∈ ( 𝑅 Cn 𝑅 ) ∧ ( ∪ 𝑅 × { ( 2nd ‘ 𝑦 ) } ) ∈ ( 𝑅 Cn 𝑆 ) ) → ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) ∈ ( 𝑅 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 44 | 14 36 43 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) ∈ ( 𝑅 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 45 | llycmpkgen | ⊢ ( 𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ ran 𝑘Gen ) | |
| 46 | 45 | ad3antrrr | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑅 ∈ ran 𝑘Gen ) |
| 47 | 6 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 48 | kgencn3 | ⊢ ( ( 𝑅 ∈ ran 𝑘Gen ∧ ( 𝑅 ×t 𝑆 ) ∈ Top ) → ( 𝑅 Cn ( 𝑅 ×t 𝑆 ) ) = ( 𝑅 Cn ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ) | |
| 49 | 46 47 48 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅 Cn ( 𝑅 ×t 𝑆 ) ) = ( 𝑅 Cn ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ) |
| 50 | 44 49 | eleqtrd | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) ∈ ( 𝑅 Cn ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ) |
| 51 | cnima | ⊢ ( ( ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) ∈ ( 𝑅 Cn ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) → ( ◡ ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) “ 𝑥 ) ∈ 𝑅 ) | |
| 52 | 50 20 51 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ◡ ( 𝑡 ∈ ∪ 𝑅 ↦ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ) “ 𝑥 ) ∈ 𝑅 ) |
| 53 | 9 52 | eqeltrrid | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∈ 𝑅 ) |
| 54 | opeq1 | ⊢ ( 𝑡 = ( 1st ‘ 𝑦 ) → 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 55 | 54 | eleq1d | ⊢ ( 𝑡 = ( 1st ‘ 𝑦 ) → ( 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ↔ 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) ) |
| 56 | xp1st | ⊢ ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ) | |
| 57 | 32 56 | syl | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ) |
| 58 | 1st2nd2 | ⊢ ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 59 | 32 58 | syl | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 60 | 59 19 | eqeltrrd | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) |
| 61 | 55 57 60 | elrabd | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 1st ‘ 𝑦 ) ∈ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ) |
| 62 | nlly2i | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∈ 𝑅 ∧ ( 1st ‘ 𝑦 ) ∈ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ) → ∃ 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∃ 𝑢 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) | |
| 63 | 7 53 61 62 | syl3anc | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∃ 𝑢 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) |
| 64 | 10 | adantr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑅 ∈ Top ) |
| 65 | 16 | adantr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑆 ∈ Top ) |
| 66 | simprlr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑢 ∈ 𝑅 ) | |
| 67 | ssrab2 | ⊢ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ⊆ ∪ 𝑆 | |
| 68 | 67 | a1i | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ⊆ ∪ 𝑆 ) |
| 69 | incom | ⊢ ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∩ 𝑘 ) = ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) | |
| 70 | simprll | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ) | |
| 71 | 70 | elpwid | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ⊆ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ) |
| 72 | ssrab2 | ⊢ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ⊆ ∪ 𝑅 | |
| 73 | 71 72 | sstrdi | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ⊆ ∪ 𝑅 ) |
| 74 | 73 | adantr | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑠 ⊆ ∪ 𝑅 ) |
| 75 | elpwi | ⊢ ( 𝑘 ∈ 𝒫 ∪ 𝑆 → 𝑘 ⊆ ∪ 𝑆 ) | |
| 76 | 75 | ad2antrl | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑘 ⊆ ∪ 𝑆 ) |
| 77 | eldif | ⊢ ( 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ↔ ( 𝑡 ∈ ( 𝑠 × 𝑘 ) ∧ ¬ 𝑡 ∈ 𝑥 ) ) | |
| 78 | 77 | anbi1i | ⊢ ( ( 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ↔ ( ( 𝑡 ∈ ( 𝑠 × 𝑘 ) ∧ ¬ 𝑡 ∈ 𝑥 ) ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ) |
| 79 | anass | ⊢ ( ( ( 𝑡 ∈ ( 𝑠 × 𝑘 ) ∧ ¬ 𝑡 ∈ 𝑥 ) ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ↔ ( 𝑡 ∈ ( 𝑠 × 𝑘 ) ∧ ( ¬ 𝑡 ∈ 𝑥 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ) ) | |
| 80 | 78 79 | bitri | ⊢ ( ( 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ↔ ( 𝑡 ∈ ( 𝑠 × 𝑘 ) ∧ ( ¬ 𝑡 ∈ 𝑥 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ) ) |
| 81 | 80 | rexbii2 | ⊢ ( ∃ 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ↔ ∃ 𝑡 ∈ ( 𝑠 × 𝑘 ) ( ¬ 𝑡 ∈ 𝑥 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ) |
| 82 | ancom | ⊢ ( ( ¬ 𝑡 ∈ 𝑥 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ↔ ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ∧ ¬ 𝑡 ∈ 𝑥 ) ) | |
| 83 | fveqeq2 | ⊢ ( 𝑡 = 〈 𝑎 , 𝑢 〉 → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ↔ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ) ) | |
| 84 | eleq1 | ⊢ ( 𝑡 = 〈 𝑎 , 𝑢 〉 → ( 𝑡 ∈ 𝑥 ↔ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) | |
| 85 | 84 | notbid | ⊢ ( 𝑡 = 〈 𝑎 , 𝑢 〉 → ( ¬ 𝑡 ∈ 𝑥 ↔ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) |
| 86 | 83 85 | anbi12d | ⊢ ( 𝑡 = 〈 𝑎 , 𝑢 〉 → ( ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ∧ ¬ 𝑡 ∈ 𝑥 ) ↔ ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) ) |
| 87 | 82 86 | bitrid | ⊢ ( 𝑡 = 〈 𝑎 , 𝑢 〉 → ( ( ¬ 𝑡 ∈ 𝑥 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ↔ ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) ) |
| 88 | 87 | rexxp | ⊢ ( ∃ 𝑡 ∈ ( 𝑠 × 𝑘 ) ( ¬ 𝑡 ∈ 𝑥 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ↔ ∃ 𝑎 ∈ 𝑠 ∃ 𝑢 ∈ 𝑘 ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) |
| 89 | 81 88 | bitri | ⊢ ( ∃ 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ↔ ∃ 𝑎 ∈ 𝑠 ∃ 𝑢 ∈ 𝑘 ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) |
| 90 | simpl | ⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → 𝑠 ⊆ ∪ 𝑅 ) | |
| 91 | 90 | sselda | ⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) → 𝑎 ∈ ∪ 𝑅 ) |
| 92 | 91 | adantr | ⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → 𝑎 ∈ ∪ 𝑅 ) |
| 93 | simplr | ⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) → 𝑘 ⊆ ∪ 𝑆 ) | |
| 94 | 93 | sselda | ⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → 𝑢 ∈ ∪ 𝑆 ) |
| 95 | 92 94 | opelxpd | ⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → 〈 𝑎 , 𝑢 〉 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 96 | 95 | fvresd | ⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = ( 2nd ‘ 〈 𝑎 , 𝑢 〉 ) ) |
| 97 | vex | ⊢ 𝑎 ∈ V | |
| 98 | vex | ⊢ 𝑢 ∈ V | |
| 99 | 97 98 | op2nd | ⊢ ( 2nd ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑢 |
| 100 | 96 99 | eqtrdi | ⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑢 ) |
| 101 | 100 | eqeq1d | ⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ↔ 𝑢 = 𝑏 ) ) |
| 102 | 101 | anbi1d | ⊢ ( ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) ∧ 𝑢 ∈ 𝑘 ) → ( ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ↔ ( 𝑢 = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) ) |
| 103 | 102 | rexbidva | ⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) → ( ∃ 𝑢 ∈ 𝑘 ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ↔ ∃ 𝑢 ∈ 𝑘 ( 𝑢 = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ) ) |
| 104 | opeq2 | ⊢ ( 𝑢 = 𝑏 → 〈 𝑎 , 𝑢 〉 = 〈 𝑎 , 𝑏 〉 ) | |
| 105 | 104 | eleq1d | ⊢ ( 𝑢 = 𝑏 → ( 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 106 | 105 | notbid | ⊢ ( 𝑢 = 𝑏 → ( ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ↔ ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 107 | 106 | ceqsrexbv | ⊢ ( ∃ 𝑢 ∈ 𝑘 ( 𝑢 = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ↔ ( 𝑏 ∈ 𝑘 ∧ ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 108 | 103 107 | bitrdi | ⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑎 ∈ 𝑠 ) → ( ∃ 𝑢 ∈ 𝑘 ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ↔ ( 𝑏 ∈ 𝑘 ∧ ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) ) |
| 109 | 108 | rexbidva | ⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑢 ∈ 𝑘 ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ↔ ∃ 𝑎 ∈ 𝑠 ( 𝑏 ∈ 𝑘 ∧ ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) ) |
| 110 | r19.42v | ⊢ ( ∃ 𝑎 ∈ 𝑠 ( 𝑏 ∈ 𝑘 ∧ ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ↔ ( 𝑏 ∈ 𝑘 ∧ ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) | |
| 111 | 109 110 | bitrdi | ⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑢 ∈ 𝑘 ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 〈 𝑎 , 𝑢 〉 ) = 𝑏 ∧ ¬ 〈 𝑎 , 𝑢 〉 ∈ 𝑥 ) ↔ ( 𝑏 ∈ 𝑘 ∧ ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) ) |
| 112 | 89 111 | bitrid | ⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( ∃ 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ↔ ( 𝑏 ∈ 𝑘 ∧ ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) ) |
| 113 | f2ndres | ⊢ ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) : ( ∪ 𝑅 × ∪ 𝑆 ) ⟶ ∪ 𝑆 | |
| 114 | ffn | ⊢ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) : ( ∪ 𝑅 × ∪ 𝑆 ) ⟶ ∪ 𝑆 → ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) Fn ( ∪ 𝑅 × ∪ 𝑆 ) ) | |
| 115 | 113 114 | ax-mp | ⊢ ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) Fn ( ∪ 𝑅 × ∪ 𝑆 ) |
| 116 | difss | ⊢ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ⊆ ( 𝑠 × 𝑘 ) | |
| 117 | xpss12 | ⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( 𝑠 × 𝑘 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) | |
| 118 | 116 117 | sstrid | ⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 119 | fvelimab | ⊢ ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) Fn ( ∪ 𝑅 × ∪ 𝑆 ) ∧ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) → ( 𝑏 ∈ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ↔ ∃ 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ) | |
| 120 | 115 118 119 | sylancr | ⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( 𝑏 ∈ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ↔ ∃ 𝑡 ∈ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ‘ 𝑡 ) = 𝑏 ) ) |
| 121 | eldif | ⊢ ( 𝑏 ∈ ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ↔ ( 𝑏 ∈ 𝑘 ∧ ¬ 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) | |
| 122 | simpr | ⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → 𝑘 ⊆ ∪ 𝑆 ) | |
| 123 | 122 | sselda | ⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑏 ∈ 𝑘 ) → 𝑏 ∈ ∪ 𝑆 ) |
| 124 | sneq | ⊢ ( 𝑣 = 𝑏 → { 𝑣 } = { 𝑏 } ) | |
| 125 | 124 | xpeq2d | ⊢ ( 𝑣 = 𝑏 → ( 𝑠 × { 𝑣 } ) = ( 𝑠 × { 𝑏 } ) ) |
| 126 | 125 | sseq1d | ⊢ ( 𝑣 = 𝑏 → ( ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 ↔ ( 𝑠 × { 𝑏 } ) ⊆ 𝑥 ) ) |
| 127 | dfss3 | ⊢ ( ( 𝑠 × { 𝑏 } ) ⊆ 𝑥 ↔ ∀ 𝑘 ∈ ( 𝑠 × { 𝑏 } ) 𝑘 ∈ 𝑥 ) | |
| 128 | eleq1 | ⊢ ( 𝑘 = 〈 𝑎 , 𝑡 〉 → ( 𝑘 ∈ 𝑥 ↔ 〈 𝑎 , 𝑡 〉 ∈ 𝑥 ) ) | |
| 129 | 128 | ralxp | ⊢ ( ∀ 𝑘 ∈ ( 𝑠 × { 𝑏 } ) 𝑘 ∈ 𝑥 ↔ ∀ 𝑎 ∈ 𝑠 ∀ 𝑡 ∈ { 𝑏 } 〈 𝑎 , 𝑡 〉 ∈ 𝑥 ) |
| 130 | vex | ⊢ 𝑏 ∈ V | |
| 131 | opeq2 | ⊢ ( 𝑡 = 𝑏 → 〈 𝑎 , 𝑡 〉 = 〈 𝑎 , 𝑏 〉 ) | |
| 132 | 131 | eleq1d | ⊢ ( 𝑡 = 𝑏 → ( 〈 𝑎 , 𝑡 〉 ∈ 𝑥 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 133 | 130 132 | ralsn | ⊢ ( ∀ 𝑡 ∈ { 𝑏 } 〈 𝑎 , 𝑡 〉 ∈ 𝑥 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) |
| 134 | 133 | ralbii | ⊢ ( ∀ 𝑎 ∈ 𝑠 ∀ 𝑡 ∈ { 𝑏 } 〈 𝑎 , 𝑡 〉 ∈ 𝑥 ↔ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) |
| 135 | 127 129 134 | 3bitri | ⊢ ( ( 𝑠 × { 𝑏 } ) ⊆ 𝑥 ↔ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) |
| 136 | 126 135 | bitrdi | ⊢ ( 𝑣 = 𝑏 → ( ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 ↔ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 137 | 136 | elrab3 | ⊢ ( 𝑏 ∈ ∪ 𝑆 → ( 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ↔ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 138 | 123 137 | syl | ⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑏 ∈ 𝑘 ) → ( 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ↔ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 139 | 138 | notbid | ⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑏 ∈ 𝑘 ) → ( ¬ 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ↔ ¬ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 140 | rexnal | ⊢ ( ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ↔ ¬ ∀ 𝑎 ∈ 𝑠 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) | |
| 141 | 139 140 | bitr4di | ⊢ ( ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) ∧ 𝑏 ∈ 𝑘 ) → ( ¬ 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ↔ ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 142 | 141 | pm5.32da | ⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( ( 𝑏 ∈ 𝑘 ∧ ¬ 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ↔ ( 𝑏 ∈ 𝑘 ∧ ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) ) |
| 143 | 121 142 | bitrid | ⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( 𝑏 ∈ ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ↔ ( 𝑏 ∈ 𝑘 ∧ ∃ 𝑎 ∈ 𝑠 ¬ 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) ) |
| 144 | 112 120 143 | 3bitr4d | ⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( 𝑏 ∈ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ↔ 𝑏 ∈ ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ) |
| 145 | 144 | eqrdv | ⊢ ( ( 𝑠 ⊆ ∪ 𝑅 ∧ 𝑘 ⊆ ∪ 𝑆 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) |
| 146 | 74 76 145 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) |
| 147 | difin | ⊢ ( 𝑘 ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) = ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) | |
| 148 | 65 | adantr | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑆 ∈ Top ) |
| 149 | 24 | restuni | ⊢ ( ( 𝑆 ∈ Top ∧ 𝑘 ⊆ ∪ 𝑆 ) → 𝑘 = ∪ ( 𝑆 ↾t 𝑘 ) ) |
| 150 | 148 76 149 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑘 = ∪ ( 𝑆 ↾t 𝑘 ) ) |
| 151 | 150 | difeq1d | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑘 ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) = ( ∪ ( 𝑆 ↾t 𝑘 ) ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ) |
| 152 | 147 151 | eqtr3id | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑘 ∖ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) = ( ∪ ( 𝑆 ↾t 𝑘 ) ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ) |
| 153 | 146 152 | eqtrd | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ( ∪ ( 𝑆 ↾t 𝑘 ) ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ) |
| 154 | 15 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) |
| 155 | 154 | elin2d | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑆 ∈ Haus ) |
| 156 | df-ima | ⊢ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ran ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ↾ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) | |
| 157 | resres | ⊢ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ↾ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ( 2nd ↾ ( ( ∪ 𝑅 × ∪ 𝑆 ) ∩ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) | |
| 158 | inss2 | ⊢ ( ( ∪ 𝑅 × ∪ 𝑆 ) ∩ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) | |
| 159 | 158 116 | sstri | ⊢ ( ( ∪ 𝑅 × ∪ 𝑆 ) ∩ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ( 𝑠 × 𝑘 ) |
| 160 | ssres2 | ⊢ ( ( ( ∪ 𝑅 × ∪ 𝑆 ) ∩ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ( 𝑠 × 𝑘 ) → ( 2nd ↾ ( ( ∪ 𝑅 × ∪ 𝑆 ) ∩ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) ⊆ ( 2nd ↾ ( 𝑠 × 𝑘 ) ) ) | |
| 161 | 159 160 | ax-mp | ⊢ ( 2nd ↾ ( ( ∪ 𝑅 × ∪ 𝑆 ) ∩ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) ⊆ ( 2nd ↾ ( 𝑠 × 𝑘 ) ) |
| 162 | 157 161 | eqsstri | ⊢ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ↾ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ( 2nd ↾ ( 𝑠 × 𝑘 ) ) |
| 163 | 162 | rnssi | ⊢ ran ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ↾ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ran ( 2nd ↾ ( 𝑠 × 𝑘 ) ) |
| 164 | 156 163 | eqsstri | ⊢ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ran ( 2nd ↾ ( 𝑠 × 𝑘 ) ) |
| 165 | f2ndres | ⊢ ( 2nd ↾ ( 𝑠 × 𝑘 ) ) : ( 𝑠 × 𝑘 ) ⟶ 𝑘 | |
| 166 | frn | ⊢ ( ( 2nd ↾ ( 𝑠 × 𝑘 ) ) : ( 𝑠 × 𝑘 ) ⟶ 𝑘 → ran ( 2nd ↾ ( 𝑠 × 𝑘 ) ) ⊆ 𝑘 ) | |
| 167 | 165 166 | ax-mp | ⊢ ran ( 2nd ↾ ( 𝑠 × 𝑘 ) ) ⊆ 𝑘 |
| 168 | 164 167 | sstri | ⊢ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ 𝑘 |
| 169 | 168 76 | sstrid | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ∪ 𝑆 ) |
| 170 | 12 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
| 171 | 148 17 | sylib | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
| 172 | tx2cn | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ∧ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) → ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) | |
| 173 | 170 171 172 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
| 174 | 27 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 175 | 116 | a1i | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ⊆ ( 𝑠 × 𝑘 ) ) |
| 176 | vex | ⊢ 𝑠 ∈ V | |
| 177 | vex | ⊢ 𝑘 ∈ V | |
| 178 | 176 177 | xpex | ⊢ ( 𝑠 × 𝑘 ) ∈ V |
| 179 | 178 | a1i | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑠 × 𝑘 ) ∈ V ) |
| 180 | restabs | ⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ⊆ ( 𝑠 × 𝑘 ) ∧ ( 𝑠 × 𝑘 ) ∈ V ) → ( ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ( ( 𝑅 ×t 𝑆 ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) | |
| 181 | 174 175 179 180 | syl3anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) = ( ( 𝑅 ×t 𝑆 ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) |
| 182 | 64 | adantr | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑅 ∈ Top ) |
| 183 | 154 4 | syl | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑆 ∈ Top ) |
| 184 | 176 | a1i | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑠 ∈ V ) |
| 185 | simprl | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑘 ∈ 𝒫 ∪ 𝑆 ) | |
| 186 | txrest | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑠 ∈ V ∧ 𝑘 ∈ 𝒫 ∪ 𝑆 ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) = ( ( 𝑅 ↾t 𝑠 ) ×t ( 𝑆 ↾t 𝑘 ) ) ) | |
| 187 | 182 183 184 185 186 | syl22anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) = ( ( 𝑅 ↾t 𝑠 ) ×t ( 𝑆 ↾t 𝑘 ) ) ) |
| 188 | simprr3 | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑅 ↾t 𝑠 ) ∈ Comp ) | |
| 189 | 188 | adantr | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑅 ↾t 𝑠 ) ∈ Comp ) |
| 190 | simprr | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑆 ↾t 𝑘 ) ∈ Comp ) | |
| 191 | txcmp | ⊢ ( ( ( 𝑅 ↾t 𝑠 ) ∈ Comp ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) → ( ( 𝑅 ↾t 𝑠 ) ×t ( 𝑆 ↾t 𝑘 ) ) ∈ Comp ) | |
| 192 | 189 190 191 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑅 ↾t 𝑠 ) ×t ( 𝑆 ↾t 𝑘 ) ) ∈ Comp ) |
| 193 | 187 192 | eqeltrd | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∈ Comp ) |
| 194 | difin | ⊢ ( ( 𝑠 × 𝑘 ) ∖ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ) = ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) | |
| 195 | 74 76 117 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑠 × 𝑘 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 196 | 182 148 25 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 197 | 195 196 | sseqtrd | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑠 × 𝑘 ) ⊆ ∪ ( 𝑅 ×t 𝑆 ) ) |
| 198 | 28 | restuni | ⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( 𝑠 × 𝑘 ) ⊆ ∪ ( 𝑅 ×t 𝑆 ) ) → ( 𝑠 × 𝑘 ) = ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) |
| 199 | 174 197 198 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑠 × 𝑘 ) = ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) |
| 200 | 199 | difeq1d | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑠 × 𝑘 ) ∖ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ) = ( ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∖ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ) ) |
| 201 | 194 200 | eqtr3id | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) = ( ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∖ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ) ) |
| 202 | resttop | ⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( 𝑠 × 𝑘 ) ∈ V ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∈ Top ) | |
| 203 | 174 178 202 | sylancl | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∈ Top ) |
| 204 | incom | ⊢ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) = ( 𝑥 ∩ ( 𝑠 × 𝑘 ) ) | |
| 205 | 20 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| 206 | kgeni | ⊢ ( ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∈ Comp ) → ( 𝑥 ∩ ( 𝑠 × 𝑘 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) | |
| 207 | 205 193 206 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑥 ∩ ( 𝑠 × 𝑘 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) |
| 208 | 204 207 | eqeltrid | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ∈ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) |
| 209 | eqid | ⊢ ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) = ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) | |
| 210 | 209 | opncld | ⊢ ( ( ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∈ Top ∧ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ∈ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) → ( ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∖ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ) ∈ ( Clsd ‘ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) ) |
| 211 | 203 208 210 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ∪ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∖ ( ( 𝑠 × 𝑘 ) ∩ 𝑥 ) ) ∈ ( Clsd ‘ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) ) |
| 212 | 201 211 | eqeltrd | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ∈ ( Clsd ‘ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) ) |
| 213 | cmpcld | ⊢ ( ( ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ∈ Comp ∧ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ∈ ( Clsd ‘ ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ) ) → ( ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ Comp ) | |
| 214 | 193 212 213 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( ( 𝑅 ×t 𝑆 ) ↾t ( 𝑠 × 𝑘 ) ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ Comp ) |
| 215 | 181 214 | eqeltrrd | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑅 ×t 𝑆 ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ Comp ) |
| 216 | imacmp | ⊢ ( ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ∧ ( ( 𝑅 ×t 𝑆 ) ↾t ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ Comp ) → ( 𝑆 ↾t ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) ∈ Comp ) | |
| 217 | 173 215 216 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑆 ↾t ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) ∈ Comp ) |
| 218 | 24 | hauscmp | ⊢ ( ( 𝑆 ∈ Haus ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ ∪ 𝑆 ∧ ( 𝑆 ↾t ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ) ∈ Comp ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ ( Clsd ‘ 𝑆 ) ) |
| 219 | 155 169 217 218 | syl3anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ ( Clsd ‘ 𝑆 ) ) |
| 220 | 168 | a1i | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ 𝑘 ) |
| 221 | 24 | restcldi | ⊢ ( ( 𝑘 ⊆ ∪ 𝑆 ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ ( Clsd ‘ 𝑆 ) ∧ ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ⊆ 𝑘 ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝑆 ↾t 𝑘 ) ) ) |
| 222 | 76 219 220 221 | syl3anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 2nd ↾ ( ∪ 𝑅 × ∪ 𝑆 ) ) “ ( ( 𝑠 × 𝑘 ) ∖ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝑆 ↾t 𝑘 ) ) ) |
| 223 | 153 222 | eqeltrrd | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ∪ ( 𝑆 ↾t 𝑘 ) ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ∈ ( Clsd ‘ ( 𝑆 ↾t 𝑘 ) ) ) |
| 224 | resttop | ⊢ ( ( 𝑆 ∈ Top ∧ 𝑘 ∈ 𝒫 ∪ 𝑆 ) → ( 𝑆 ↾t 𝑘 ) ∈ Top ) | |
| 225 | 148 185 224 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑆 ↾t 𝑘 ) ∈ Top ) |
| 226 | inss1 | ⊢ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ 𝑘 | |
| 227 | 226 150 | sseqtrid | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ ∪ ( 𝑆 ↾t 𝑘 ) ) |
| 228 | eqid | ⊢ ∪ ( 𝑆 ↾t 𝑘 ) = ∪ ( 𝑆 ↾t 𝑘 ) | |
| 229 | 228 | isopn2 | ⊢ ( ( ( 𝑆 ↾t 𝑘 ) ∈ Top ∧ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ ∪ ( 𝑆 ↾t 𝑘 ) ) → ( ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∈ ( 𝑆 ↾t 𝑘 ) ↔ ( ∪ ( 𝑆 ↾t 𝑘 ) ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ∈ ( Clsd ‘ ( 𝑆 ↾t 𝑘 ) ) ) ) |
| 230 | 225 227 229 | syl2anc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∈ ( 𝑆 ↾t 𝑘 ) ↔ ( ∪ ( 𝑆 ↾t 𝑘 ) ∖ ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ∈ ( Clsd ‘ ( 𝑆 ↾t 𝑘 ) ) ) ) |
| 231 | 223 230 | mpbird | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑘 ∩ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∈ ( 𝑆 ↾t 𝑘 ) ) |
| 232 | 69 231 | eqeltrid | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑆 ∧ ( 𝑆 ↾t 𝑘 ) ∈ Comp ) ) → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∩ 𝑘 ) ∈ ( 𝑆 ↾t 𝑘 ) ) |
| 233 | 232 | expr | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑘 ∈ 𝒫 ∪ 𝑆 ) → ( ( 𝑆 ↾t 𝑘 ) ∈ Comp → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∩ 𝑘 ) ∈ ( 𝑆 ↾t 𝑘 ) ) ) |
| 234 | 233 | ralrimiva | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ∀ 𝑘 ∈ 𝒫 ∪ 𝑆 ( ( 𝑆 ↾t 𝑘 ) ∈ Comp → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∩ 𝑘 ) ∈ ( 𝑆 ↾t 𝑘 ) ) ) |
| 235 | 65 17 | sylib | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
| 236 | elkgen | ⊢ ( 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∈ ( 𝑘Gen ‘ 𝑆 ) ↔ ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ⊆ ∪ 𝑆 ∧ ∀ 𝑘 ∈ 𝒫 ∪ 𝑆 ( ( 𝑆 ↾t 𝑘 ) ∈ Comp → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∩ 𝑘 ) ∈ ( 𝑆 ↾t 𝑘 ) ) ) ) ) | |
| 237 | 235 236 | syl | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∈ ( 𝑘Gen ‘ 𝑆 ) ↔ ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ⊆ ∪ 𝑆 ∧ ∀ 𝑘 ∈ 𝒫 ∪ 𝑆 ( ( 𝑆 ↾t 𝑘 ) ∈ Comp → ( { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∩ 𝑘 ) ∈ ( 𝑆 ↾t 𝑘 ) ) ) ) ) |
| 238 | 68 234 237 | mpbir2and | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∈ ( 𝑘Gen ‘ 𝑆 ) ) |
| 239 | 15 | adantr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) |
| 240 | 239 2 | syl | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑆 ∈ ran 𝑘Gen ) |
| 241 | kgenidm | ⊢ ( 𝑆 ∈ ran 𝑘Gen → ( 𝑘Gen ‘ 𝑆 ) = 𝑆 ) | |
| 242 | 240 241 | syl | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑘Gen ‘ 𝑆 ) = 𝑆 ) |
| 243 | 238 242 | eleqtrd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∈ 𝑆 ) |
| 244 | txopn | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑢 ∈ 𝑅 ∧ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ∈ 𝑆 ) ) → ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 245 | 64 65 66 243 244 | syl22anc | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 246 | 59 | adantr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 247 | simprr1 | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 1st ‘ 𝑦 ) ∈ 𝑢 ) | |
| 248 | sneq | ⊢ ( 𝑣 = ( 2nd ‘ 𝑦 ) → { 𝑣 } = { ( 2nd ‘ 𝑦 ) } ) | |
| 249 | 248 | xpeq2d | ⊢ ( 𝑣 = ( 2nd ‘ 𝑦 ) → ( 𝑠 × { 𝑣 } ) = ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) ) |
| 250 | 249 | sseq1d | ⊢ ( 𝑣 = ( 2nd ‘ 𝑦 ) → ( ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 ↔ ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) ⊆ 𝑥 ) ) |
| 251 | 34 | adantr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) |
| 252 | relxp | ⊢ Rel ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) | |
| 253 | 252 | a1i | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → Rel ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) ) |
| 254 | opelxp | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) ↔ ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ { ( 2nd ‘ 𝑦 ) } ) ) | |
| 255 | 71 | sselda | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑎 ∈ 𝑠 ) → 𝑎 ∈ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ) |
| 256 | opeq1 | ⊢ ( 𝑡 = 𝑎 → 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 = 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 257 | 256 | eleq1d | ⊢ ( 𝑡 = 𝑎 → ( 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ↔ 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) ) |
| 258 | 257 | elrab | ⊢ ( 𝑎 ∈ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ↔ ( 𝑎 ∈ ∪ 𝑅 ∧ 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) ) |
| 259 | 258 | simprbi | ⊢ ( 𝑎 ∈ { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } → 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) |
| 260 | 255 259 | syl | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑎 ∈ 𝑠 ) → 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) |
| 261 | elsni | ⊢ ( 𝑏 ∈ { ( 2nd ‘ 𝑦 ) } → 𝑏 = ( 2nd ‘ 𝑦 ) ) | |
| 262 | 261 | opeq2d | ⊢ ( 𝑏 ∈ { ( 2nd ‘ 𝑦 ) } → 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ) |
| 263 | 262 | eleq1d | ⊢ ( 𝑏 ∈ { ( 2nd ‘ 𝑦 ) } → ( 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ↔ 〈 𝑎 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) ) |
| 264 | 260 263 | syl5ibrcom | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑎 ∈ 𝑠 ) → ( 𝑏 ∈ { ( 2nd ‘ 𝑦 ) } → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 265 | 264 | expimpd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ { ( 2nd ‘ 𝑦 ) } ) → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 266 | 254 265 | biimtrid | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 267 | 253 266 | relssdv | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑠 × { ( 2nd ‘ 𝑦 ) } ) ⊆ 𝑥 ) |
| 268 | 250 251 267 | elrabd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 2nd ‘ 𝑦 ) ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) |
| 269 | 247 268 | opelxpd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) |
| 270 | 246 269 | eqeltrd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑦 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) |
| 271 | relxp | ⊢ Rel ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) | |
| 272 | 271 | a1i | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → Rel ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) |
| 273 | opelxp | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ↔ ( 𝑎 ∈ 𝑢 ∧ 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) | |
| 274 | 126 | elrab | ⊢ ( 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ↔ ( 𝑏 ∈ ∪ 𝑆 ∧ ( 𝑠 × { 𝑏 } ) ⊆ 𝑥 ) ) |
| 275 | 274 | simprbi | ⊢ ( 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } → ( 𝑠 × { 𝑏 } ) ⊆ 𝑥 ) |
| 276 | simprr2 | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑢 ⊆ 𝑠 ) | |
| 277 | 276 | sselda | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑎 ∈ 𝑢 ) → 𝑎 ∈ 𝑠 ) |
| 278 | vsnid | ⊢ 𝑏 ∈ { 𝑏 } | |
| 279 | opelxpi | ⊢ ( ( 𝑎 ∈ 𝑠 ∧ 𝑏 ∈ { 𝑏 } ) → 〈 𝑎 , 𝑏 〉 ∈ ( 𝑠 × { 𝑏 } ) ) | |
| 280 | 277 278 279 | sylancl | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑎 ∈ 𝑢 ) → 〈 𝑎 , 𝑏 〉 ∈ ( 𝑠 × { 𝑏 } ) ) |
| 281 | ssel | ⊢ ( ( 𝑠 × { 𝑏 } ) ⊆ 𝑥 → ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑠 × { 𝑏 } ) → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) | |
| 282 | 275 280 281 | syl2imc | ⊢ ( ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) ∧ 𝑎 ∈ 𝑢 ) → ( 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 283 | 282 | expimpd | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ( 𝑎 ∈ 𝑢 ∧ 𝑏 ∈ { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 284 | 273 283 | biimtrid | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) → 〈 𝑎 , 𝑏 〉 ∈ 𝑥 ) ) |
| 285 | 272 284 | relssdv | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ 𝑥 ) |
| 286 | eleq2 | ⊢ ( 𝑡 = ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) → ( 𝑦 ∈ 𝑡 ↔ 𝑦 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ) ) | |
| 287 | sseq1 | ⊢ ( 𝑡 = ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) → ( 𝑡 ⊆ 𝑥 ↔ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ 𝑥 ) ) | |
| 288 | 286 287 | anbi12d | ⊢ ( 𝑡 = ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) → ( ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ↔ ( 𝑦 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∧ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ 𝑥 ) ) ) |
| 289 | 288 | rspcev | ⊢ ( ( ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∈ ( 𝑅 ×t 𝑆 ) ∧ ( 𝑦 ∈ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ∧ ( 𝑢 × { 𝑣 ∈ ∪ 𝑆 ∣ ( 𝑠 × { 𝑣 } ) ⊆ 𝑥 } ) ⊆ 𝑥 ) ) → ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) |
| 290 | 245 270 285 289 | syl12anc | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) ) ) → ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) |
| 291 | 290 | expr | ⊢ ( ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∧ 𝑢 ∈ 𝑅 ) ) → ( ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) → ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) ) |
| 292 | 291 | rexlimdvva | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑠 ∈ 𝒫 { 𝑡 ∈ ∪ 𝑅 ∣ 〈 𝑡 , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 } ∃ 𝑢 ∈ 𝑅 ( ( 1st ‘ 𝑦 ) ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑅 ↾t 𝑠 ) ∈ Comp ) → ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) ) |
| 293 | 63 292 | mpd | ⊢ ( ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) |
| 294 | 293 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) |
| 295 | 6 | adantr | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 296 | eltop2 | ⊢ ( ( 𝑅 ×t 𝑆 ) ∈ Top → ( 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) ) | |
| 297 | 295 296 | syl | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) → ( 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑡 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑦 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑥 ) ) ) |
| 298 | 294 297 | mpbird | ⊢ ( ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ) → 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ) |
| 299 | 298 | ex | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) → ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) → 𝑥 ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 300 | 299 | ssrdv | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) → ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 301 | iskgen2 | ⊢ ( ( 𝑅 ×t 𝑆 ) ∈ ran 𝑘Gen ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( 𝑘Gen ‘ ( 𝑅 ×t 𝑆 ) ) ⊆ ( 𝑅 ×t 𝑆 ) ) ) | |
| 302 | 6 300 301 | sylanbrc | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ ( ran 𝑘Gen ∩ Haus ) ) → ( 𝑅 ×t 𝑆 ) ∈ ran 𝑘Gen ) |