This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The compact generator is idempotent on compactly generated spaces. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgenidm | ⊢ ( 𝐽 ∈ ran 𝑘Gen → ( 𝑘Gen ‘ 𝐽 ) = 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kgenf | ⊢ 𝑘Gen : Top ⟶ Top | |
| 2 | ffn | ⊢ ( 𝑘Gen : Top ⟶ Top → 𝑘Gen Fn Top ) | |
| 3 | fvelrnb | ⊢ ( 𝑘Gen Fn Top → ( 𝐽 ∈ ran 𝑘Gen ↔ ∃ 𝑗 ∈ Top ( 𝑘Gen ‘ 𝑗 ) = 𝐽 ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( 𝐽 ∈ ran 𝑘Gen ↔ ∃ 𝑗 ∈ Top ( 𝑘Gen ‘ 𝑗 ) = 𝐽 ) |
| 5 | toptopon2 | ⊢ ( 𝑗 ∈ Top ↔ 𝑗 ∈ ( TopOn ‘ ∪ 𝑗 ) ) | |
| 6 | kgentopon | ⊢ ( 𝑗 ∈ ( TopOn ‘ ∪ 𝑗 ) → ( 𝑘Gen ‘ 𝑗 ) ∈ ( TopOn ‘ ∪ 𝑗 ) ) | |
| 7 | 5 6 | sylbi | ⊢ ( 𝑗 ∈ Top → ( 𝑘Gen ‘ 𝑗 ) ∈ ( TopOn ‘ ∪ 𝑗 ) ) |
| 8 | kgentopon | ⊢ ( ( 𝑘Gen ‘ 𝑗 ) ∈ ( TopOn ‘ ∪ 𝑗 ) → ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ∈ ( TopOn ‘ ∪ 𝑗 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑗 ∈ Top → ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ∈ ( TopOn ‘ ∪ 𝑗 ) ) |
| 10 | toponss | ⊢ ( ( ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ∈ ( TopOn ‘ ∪ 𝑗 ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → 𝑥 ⊆ ∪ 𝑗 ) | |
| 11 | 9 10 | sylan | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → 𝑥 ⊆ ∪ 𝑗 ) |
| 12 | simplr | ⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑗 ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) ) → 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) | |
| 13 | kgencmp2 | ⊢ ( 𝑗 ∈ Top → ( ( 𝑗 ↾t 𝑘 ) ∈ Comp ↔ ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ∈ Comp ) ) | |
| 14 | 13 | biimpa | ⊢ ( ( 𝑗 ∈ Top ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) → ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ∈ Comp ) |
| 15 | 14 | ad2ant2rl | ⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑗 ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) ) → ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ∈ Comp ) |
| 16 | kgeni | ⊢ ( ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ∧ ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ∈ Comp ) → ( 𝑥 ∩ 𝑘 ) ∈ ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ) | |
| 17 | 12 15 16 | syl2anc | ⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑗 ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑥 ∩ 𝑘 ) ∈ ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ) |
| 18 | kgencmp | ⊢ ( ( 𝑗 ∈ Top ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) → ( 𝑗 ↾t 𝑘 ) = ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ) | |
| 19 | 18 | ad2ant2rl | ⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑗 ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑗 ↾t 𝑘 ) = ( ( 𝑘Gen ‘ 𝑗 ) ↾t 𝑘 ) ) |
| 20 | 17 19 | eleqtrrd | ⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑗 ∧ ( 𝑗 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) |
| 21 | 20 | expr | ⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ 𝒫 ∪ 𝑗 ) → ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ) |
| 22 | 21 | ralrimiva | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ) |
| 23 | simpl | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → 𝑗 ∈ Top ) | |
| 24 | 23 5 | sylib | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → 𝑗 ∈ ( TopOn ‘ ∪ 𝑗 ) ) |
| 25 | elkgen | ⊢ ( 𝑗 ∈ ( TopOn ‘ ∪ 𝑗 ) → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝑗 ) ↔ ( 𝑥 ⊆ ∪ 𝑗 ∧ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝑗 ) ↔ ( 𝑥 ⊆ ∪ 𝑗 ∧ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) ) ) ) |
| 27 | 11 22 26 | mpbir2and | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ) → 𝑥 ∈ ( 𝑘Gen ‘ 𝑗 ) ) |
| 28 | 27 | ex | ⊢ ( 𝑗 ∈ Top → ( 𝑥 ∈ ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) → 𝑥 ∈ ( 𝑘Gen ‘ 𝑗 ) ) ) |
| 29 | 28 | ssrdv | ⊢ ( 𝑗 ∈ Top → ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ⊆ ( 𝑘Gen ‘ 𝑗 ) ) |
| 30 | fveq2 | ⊢ ( ( 𝑘Gen ‘ 𝑗 ) = 𝐽 → ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) = ( 𝑘Gen ‘ 𝐽 ) ) | |
| 31 | id | ⊢ ( ( 𝑘Gen ‘ 𝑗 ) = 𝐽 → ( 𝑘Gen ‘ 𝑗 ) = 𝐽 ) | |
| 32 | 30 31 | sseq12d | ⊢ ( ( 𝑘Gen ‘ 𝑗 ) = 𝐽 → ( ( 𝑘Gen ‘ ( 𝑘Gen ‘ 𝑗 ) ) ⊆ ( 𝑘Gen ‘ 𝑗 ) ↔ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ) |
| 33 | 29 32 | syl5ibcom | ⊢ ( 𝑗 ∈ Top → ( ( 𝑘Gen ‘ 𝑗 ) = 𝐽 → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ) |
| 34 | 33 | rexlimiv | ⊢ ( ∃ 𝑗 ∈ Top ( 𝑘Gen ‘ 𝑗 ) = 𝐽 → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
| 35 | 4 34 | sylbi | ⊢ ( 𝐽 ∈ ran 𝑘Gen → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
| 36 | kgentop | ⊢ ( 𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top ) | |
| 37 | kgenss | ⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) | |
| 38 | 36 37 | syl | ⊢ ( 𝐽 ∈ ran 𝑘Gen → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
| 39 | 35 38 | eqssd | ⊢ ( 𝐽 ∈ ran 𝑘Gen → ( 𝑘Gen ‘ 𝐽 ) = 𝐽 ) |