This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ceqsrexv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | ceqsrexbv | ⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsrexv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | r19.42v | ⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( 𝐴 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) | |
| 3 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 5 | 4 | pm5.32ri | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 6 | 5 | bicomi | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 7 | 6 | baib | ⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝐴 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 8 | 7 | rexbiia | ⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 9 | 1 | ceqsrexv | ⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) ) |
| 10 | 9 | pm5.32i | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |
| 11 | 2 8 10 | 3bitr3i | ⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) |