This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | restcldi.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | restcldi | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcldi.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simp2 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 3 | dfss | ⊢ ( 𝐵 ⊆ 𝐴 ↔ 𝐵 = ( 𝐵 ∩ 𝐴 ) ) | |
| 4 | 3 | biimpi | ⊢ ( 𝐵 ⊆ 𝐴 → 𝐵 = ( 𝐵 ∩ 𝐴 ) ) |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 = ( 𝐵 ∩ 𝐴 ) ) |
| 6 | ineq1 | ⊢ ( 𝑣 = 𝐵 → ( 𝑣 ∩ 𝐴 ) = ( 𝐵 ∩ 𝐴 ) ) | |
| 7 | 6 | rspceeqv | ⊢ ( ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 = ( 𝐵 ∩ 𝐴 ) ) → ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣 ∩ 𝐴 ) ) |
| 8 | 2 5 7 | syl2anc | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣 ∩ 𝐴 ) ) |
| 9 | cldrcl | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) | |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐽 ∈ Top ) |
| 11 | simp1 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 ⊆ 𝑋 ) | |
| 12 | 1 | restcld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ↔ ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣 ∩ 𝐴 ) ) ) |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ↔ ∃ 𝑣 ∈ ( Clsd ‘ 𝐽 ) 𝐵 = ( 𝑣 ∩ 𝐴 ) ) ) |
| 14 | 8 13 | mpbird | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) |