This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab . (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elrabd.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| elrabd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| elrabd.3 | ⊢ ( 𝜑 → 𝜒 ) | ||
| Assertion | elrabd | ⊢ ( 𝜑 → 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabd.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | elrabd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 3 | elrabd.3 | ⊢ ( 𝜑 → 𝜒 ) | |
| 4 | 1 | elrab | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜒 ) ) |
| 5 | 2 3 4 | sylanbrc | ⊢ ( 𝜑 → 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) |