This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dmmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| Assertion | mptpreima | ⊢ ( ◡ 𝐹 “ 𝐶 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } | |
| 3 | 1 2 | eqtri | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
| 4 | 3 | cnveqi | ⊢ ◡ 𝐹 = ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
| 5 | cnvopab | ⊢ ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } | |
| 6 | 4 5 | eqtri | ⊢ ◡ 𝐹 = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
| 7 | 6 | imaeq1i | ⊢ ( ◡ 𝐹 “ 𝐶 ) = ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } “ 𝐶 ) |
| 8 | df-ima | ⊢ ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } “ 𝐶 ) = ran ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ↾ 𝐶 ) | |
| 9 | resopab | ⊢ ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ↾ 𝐶 ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) } | |
| 10 | 9 | rneqi | ⊢ ran ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ↾ 𝐶 ) = ran { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) } |
| 11 | ancom | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ) | |
| 12 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) | |
| 13 | 11 12 | bitri | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 14 | 13 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 15 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) | |
| 16 | dfclel | ⊢ ( 𝐵 ∈ 𝐶 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) | |
| 17 | 16 | bicomi | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ↔ 𝐵 ∈ 𝐶 ) |
| 18 | 17 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) ) |
| 19 | 15 18 | bitri | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) ) |
| 20 | 14 19 | bitri | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) ) |
| 21 | 20 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) } |
| 22 | rnopab | ⊢ ran { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) } | |
| 23 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) } | |
| 24 | 21 22 23 | 3eqtr4i | ⊢ ran { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) } = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } |
| 25 | 10 24 | eqtri | ⊢ ran ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ↾ 𝐶 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } |
| 26 | 8 25 | eqtri | ⊢ ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } “ 𝐶 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } |
| 27 | 7 26 | eqtri | ⊢ ( ◡ 𝐹 “ 𝐶 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } |