This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralsn.1 | ⊢ 𝐴 ∈ V | |
| ralsn.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ralsn | ⊢ ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | ralsng | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |
| 4 | 1 3 | ax-mp | ⊢ ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) |