This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted identity function is a continuous function. (Contributed by FL, 27-Dec-2006) (Proof shortened by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idcn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ 𝐽 ⊆ 𝐽 | |
| 2 | ssidcn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ↔ 𝐽 ⊆ 𝐽 ) ) | |
| 3 | 2 | anidms | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ↔ 𝐽 ⊆ 𝐽 ) ) |
| 4 | 1 3 | mpbiri | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝐽 Cn 𝐽 ) ) |