This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1 2 | iscn2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
| 5 | 4 | simprd | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 6 | imaeq2 | ⊢ ( 𝑥 = 𝐴 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝐴 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) ) |
| 8 | 7 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ∧ 𝐴 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) |
| 9 | 5 8 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐽 ) |