This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference with intersection. Theorem 33 of Suppes p. 29. (Contributed by NM, 31-Mar-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difin | ⊢ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.61 | ⊢ ( ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 2 | anclb | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) | |
| 3 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 4 | 3 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 5 | iman | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 6 | 2 4 5 | 3bitr2i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 7 | 6 | con2bii | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 8 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 9 | 1 7 8 | 3bitr4i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) |
| 10 | 9 | difeqri | ⊢ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) |