This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace topology is a topology. Definition of subspace topology in Munkres p. 89. A is normally a subset of the base set of J . (Contributed by FL, 15-Apr-2007) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgrest | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( topGen ‘ ( 𝐽 ↾t 𝐴 ) ) = ( ( topGen ‘ 𝐽 ) ↾t 𝐴 ) ) | |
| 2 | tgtop | ⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( topGen ‘ 𝐽 ) = 𝐽 ) |
| 4 | 3 | oveq1d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( ( topGen ‘ 𝐽 ) ↾t 𝐴 ) = ( 𝐽 ↾t 𝐴 ) ) |
| 5 | 1 4 | eqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( topGen ‘ ( 𝐽 ↾t 𝐴 ) ) = ( 𝐽 ↾t 𝐴 ) ) |
| 6 | topbas | ⊢ ( 𝐽 ∈ Top → 𝐽 ∈ TopBases ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → 𝐽 ∈ TopBases ) |
| 8 | restbas | ⊢ ( 𝐽 ∈ TopBases → ( 𝐽 ↾t 𝐴 ) ∈ TopBases ) | |
| 9 | tgcl | ⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ TopBases → ( topGen ‘ ( 𝐽 ↾t 𝐴 ) ) ∈ Top ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( topGen ‘ ( 𝐽 ↾t 𝐴 ) ) ∈ Top ) |
| 11 | 5 10 | eqeltrrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |