This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xp1st | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ( 1st ‘ 𝐴 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑏 ∃ 𝑐 ( 𝐴 = 〈 𝑏 , 𝑐 〉 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ) | |
| 2 | vex | ⊢ 𝑏 ∈ V | |
| 3 | vex | ⊢ 𝑐 ∈ V | |
| 4 | 2 3 | op1std | ⊢ ( 𝐴 = 〈 𝑏 , 𝑐 〉 → ( 1st ‘ 𝐴 ) = 𝑏 ) |
| 5 | 4 | eleq1d | ⊢ ( 𝐴 = 〈 𝑏 , 𝑐 〉 → ( ( 1st ‘ 𝐴 ) ∈ 𝐵 ↔ 𝑏 ∈ 𝐵 ) ) |
| 6 | 5 | biimpar | ⊢ ( ( 𝐴 = 〈 𝑏 , 𝑐 〉 ∧ 𝑏 ∈ 𝐵 ) → ( 1st ‘ 𝐴 ) ∈ 𝐵 ) |
| 7 | 6 | adantrr | ⊢ ( ( 𝐴 = 〈 𝑏 , 𝑐 〉 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 1st ‘ 𝐴 ) ∈ 𝐵 ) |
| 8 | 7 | exlimivv | ⊢ ( ∃ 𝑏 ∃ 𝑐 ( 𝐴 = 〈 𝑏 , 𝑐 〉 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 1st ‘ 𝐴 ) ∈ 𝐵 ) |
| 9 | 1 8 | sylbi | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ( 1st ‘ 𝐴 ) ∈ 𝐵 ) |