This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txtop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) = ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) | |
| 2 | 1 | txval | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
| 3 | topbas | ⊢ ( 𝑅 ∈ Top → 𝑅 ∈ TopBases ) | |
| 4 | topbas | ⊢ ( 𝑆 ∈ Top → 𝑆 ∈ TopBases ) | |
| 5 | 1 | txbas | ⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ∈ TopBases ) |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ∈ TopBases ) |
| 7 | tgcl | ⊢ ( ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ∈ TopBases → ( topGen ‘ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) ∈ Top ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( topGen ‘ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) ∈ Top ) |
| 9 | 2 8 | eqeltrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |