This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgeni | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐴 ∩ 𝐾 ) ∈ ( 𝐽 ↾t 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass | ⊢ ( ( 𝐴 ∩ 𝐾 ) ∩ ∪ 𝐽 ) = ( 𝐴 ∩ ( 𝐾 ∩ ∪ 𝐽 ) ) | |
| 2 | in32 | ⊢ ( ( 𝐴 ∩ 𝐾 ) ∩ ∪ 𝐽 ) = ( ( 𝐴 ∩ ∪ 𝐽 ) ∩ 𝐾 ) | |
| 3 | 1 2 | eqtr3i | ⊢ ( 𝐴 ∩ ( 𝐾 ∩ ∪ 𝐽 ) ) = ( ( 𝐴 ∩ ∪ 𝐽 ) ∩ 𝐾 ) |
| 4 | df-kgen | ⊢ 𝑘Gen = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑦 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑦 ) ∈ Comp → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝑗 ↾t 𝑦 ) ) } ) | |
| 5 | 4 | mptrcl | ⊢ ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) → 𝐽 ∈ Top ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → 𝐽 ∈ Top ) |
| 7 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 8 | 6 7 | sylib | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 9 | simpl | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ) | |
| 10 | elkgen | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ↔ ( 𝐴 ⊆ ∪ 𝐽 ∧ ∀ 𝑦 ∈ 𝒫 ∪ 𝐽 ( ( 𝐽 ↾t 𝑦 ) ∈ Comp → ( 𝐴 ∩ 𝑦 ) ∈ ( 𝐽 ↾t 𝑦 ) ) ) ) ) | |
| 11 | 10 | biimpa | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝐴 ⊆ ∪ 𝐽 ∧ ∀ 𝑦 ∈ 𝒫 ∪ 𝐽 ( ( 𝐽 ↾t 𝑦 ) ∈ Comp → ( 𝐴 ∩ 𝑦 ) ∈ ( 𝐽 ↾t 𝑦 ) ) ) ) |
| 12 | 8 9 11 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐴 ⊆ ∪ 𝐽 ∧ ∀ 𝑦 ∈ 𝒫 ∪ 𝐽 ( ( 𝐽 ↾t 𝑦 ) ∈ Comp → ( 𝐴 ∩ 𝑦 ) ∈ ( 𝐽 ↾t 𝑦 ) ) ) ) |
| 13 | 12 | simpld | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → 𝐴 ⊆ ∪ 𝐽 ) |
| 14 | dfss2 | ⊢ ( 𝐴 ⊆ ∪ 𝐽 ↔ ( 𝐴 ∩ ∪ 𝐽 ) = 𝐴 ) | |
| 15 | 13 14 | sylib | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐴 ∩ ∪ 𝐽 ) = 𝐴 ) |
| 16 | 15 | ineq1d | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( ( 𝐴 ∩ ∪ 𝐽 ) ∩ 𝐾 ) = ( 𝐴 ∩ 𝐾 ) ) |
| 17 | 3 16 | eqtrid | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐴 ∩ ( 𝐾 ∩ ∪ 𝐽 ) ) = ( 𝐴 ∩ 𝐾 ) ) |
| 18 | cmptop | ⊢ ( ( 𝐽 ↾t 𝐾 ) ∈ Comp → ( 𝐽 ↾t 𝐾 ) ∈ Top ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) ∈ Top ) |
| 20 | restrcl | ⊢ ( ( 𝐽 ↾t 𝐾 ) ∈ Top → ( 𝐽 ∈ V ∧ 𝐾 ∈ V ) ) | |
| 21 | 20 | simprd | ⊢ ( ( 𝐽 ↾t 𝐾 ) ∈ Top → 𝐾 ∈ V ) |
| 22 | 19 21 | syl | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → 𝐾 ∈ V ) |
| 23 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 24 | 23 | restin | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ V ) → ( 𝐽 ↾t 𝐾 ) = ( 𝐽 ↾t ( 𝐾 ∩ ∪ 𝐽 ) ) ) |
| 25 | 6 22 24 | syl2anc | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) = ( 𝐽 ↾t ( 𝐾 ∩ ∪ 𝐽 ) ) ) |
| 26 | simpr | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) ∈ Comp ) | |
| 27 | 25 26 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t ( 𝐾 ∩ ∪ 𝐽 ) ) ∈ Comp ) |
| 28 | oveq2 | ⊢ ( 𝑦 = ( 𝐾 ∩ ∪ 𝐽 ) → ( 𝐽 ↾t 𝑦 ) = ( 𝐽 ↾t ( 𝐾 ∩ ∪ 𝐽 ) ) ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑦 = ( 𝐾 ∩ ∪ 𝐽 ) → ( ( 𝐽 ↾t 𝑦 ) ∈ Comp ↔ ( 𝐽 ↾t ( 𝐾 ∩ ∪ 𝐽 ) ) ∈ Comp ) ) |
| 30 | ineq2 | ⊢ ( 𝑦 = ( 𝐾 ∩ ∪ 𝐽 ) → ( 𝐴 ∩ 𝑦 ) = ( 𝐴 ∩ ( 𝐾 ∩ ∪ 𝐽 ) ) ) | |
| 31 | 30 28 | eleq12d | ⊢ ( 𝑦 = ( 𝐾 ∩ ∪ 𝐽 ) → ( ( 𝐴 ∩ 𝑦 ) ∈ ( 𝐽 ↾t 𝑦 ) ↔ ( 𝐴 ∩ ( 𝐾 ∩ ∪ 𝐽 ) ) ∈ ( 𝐽 ↾t ( 𝐾 ∩ ∪ 𝐽 ) ) ) ) |
| 32 | 29 31 | imbi12d | ⊢ ( 𝑦 = ( 𝐾 ∩ ∪ 𝐽 ) → ( ( ( 𝐽 ↾t 𝑦 ) ∈ Comp → ( 𝐴 ∩ 𝑦 ) ∈ ( 𝐽 ↾t 𝑦 ) ) ↔ ( ( 𝐽 ↾t ( 𝐾 ∩ ∪ 𝐽 ) ) ∈ Comp → ( 𝐴 ∩ ( 𝐾 ∩ ∪ 𝐽 ) ) ∈ ( 𝐽 ↾t ( 𝐾 ∩ ∪ 𝐽 ) ) ) ) ) |
| 33 | 12 | simprd | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ∀ 𝑦 ∈ 𝒫 ∪ 𝐽 ( ( 𝐽 ↾t 𝑦 ) ∈ Comp → ( 𝐴 ∩ 𝑦 ) ∈ ( 𝐽 ↾t 𝑦 ) ) ) |
| 34 | inss2 | ⊢ ( 𝐾 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 | |
| 35 | inex1g | ⊢ ( 𝐾 ∈ V → ( 𝐾 ∩ ∪ 𝐽 ) ∈ V ) | |
| 36 | elpwg | ⊢ ( ( 𝐾 ∩ ∪ 𝐽 ) ∈ V → ( ( 𝐾 ∩ ∪ 𝐽 ) ∈ 𝒫 ∪ 𝐽 ↔ ( 𝐾 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) ) | |
| 37 | 22 35 36 | 3syl | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( ( 𝐾 ∩ ∪ 𝐽 ) ∈ 𝒫 ∪ 𝐽 ↔ ( 𝐾 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) ) |
| 38 | 34 37 | mpbiri | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐾 ∩ ∪ 𝐽 ) ∈ 𝒫 ∪ 𝐽 ) |
| 39 | 32 33 38 | rspcdva | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( ( 𝐽 ↾t ( 𝐾 ∩ ∪ 𝐽 ) ) ∈ Comp → ( 𝐴 ∩ ( 𝐾 ∩ ∪ 𝐽 ) ) ∈ ( 𝐽 ↾t ( 𝐾 ∩ ∪ 𝐽 ) ) ) ) |
| 40 | 27 39 | mpd | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐴 ∩ ( 𝐾 ∩ ∪ 𝐽 ) ) ∈ ( 𝐽 ↾t ( 𝐾 ∩ ∪ 𝐽 ) ) ) |
| 41 | 17 40 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐴 ∩ 𝐾 ) ∈ ( 𝐽 ↾t ( 𝐾 ∩ ∪ 𝐽 ) ) ) |
| 42 | 41 25 | eleqtrrd | ⊢ ( ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐴 ∩ 𝐾 ) ∈ ( 𝐽 ↾t 𝐾 ) ) |