This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opeq2 | ⊢ ( 𝐴 = 𝐵 → 〈 𝐶 , 𝐴 〉 = 〈 𝐶 , 𝐵 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐶 ∈ V ∧ 𝐴 ∈ V ) ↔ ( 𝐶 ∈ V ∧ 𝐵 ∈ V ) ) ) |
| 3 | preq2 | ⊢ ( 𝐴 = 𝐵 → { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } ) | |
| 4 | 3 | preq2d | ⊢ ( 𝐴 = 𝐵 → { { 𝐶 } , { 𝐶 , 𝐴 } } = { { 𝐶 } , { 𝐶 , 𝐵 } } ) |
| 5 | 2 4 | ifbieq1d | ⊢ ( 𝐴 = 𝐵 → if ( ( 𝐶 ∈ V ∧ 𝐴 ∈ V ) , { { 𝐶 } , { 𝐶 , 𝐴 } } , ∅ ) = if ( ( 𝐶 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐶 } , { 𝐶 , 𝐵 } } , ∅ ) ) |
| 6 | dfopif | ⊢ 〈 𝐶 , 𝐴 〉 = if ( ( 𝐶 ∈ V ∧ 𝐴 ∈ V ) , { { 𝐶 } , { 𝐶 , 𝐴 } } , ∅ ) | |
| 7 | dfopif | ⊢ 〈 𝐶 , 𝐵 〉 = if ( ( 𝐶 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐶 } , { 𝐶 , 𝐵 } } , ∅ ) | |
| 8 | 5 6 7 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → 〈 𝐶 , 𝐴 〉 = 〈 𝐶 , 𝐵 〉 ) |