This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elkgen | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐴 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kgenval | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑘Gen ‘ 𝐽 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ↔ 𝐴 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ) ) |
| 3 | ineq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∩ 𝑘 ) = ( 𝐴 ∩ 𝑘 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ↔ ( 𝐴 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ↔ ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐴 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ↔ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐴 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) |
| 7 | 6 | elrab | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ↔ ( 𝐴 ∈ 𝒫 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐴 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) |
| 8 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 9 | elpw2g | ⊢ ( 𝑋 ∈ 𝐽 → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
| 11 | 10 | anbi1d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( 𝐴 ∈ 𝒫 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐴 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐴 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) ) |
| 12 | 7 11 | bitrid | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐴 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) } ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐴 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) ) |
| 13 | 2 12 | bitrd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑘Gen ‘ 𝐽 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝐴 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) ) |