This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of two compact spaces is compact. (Contributed by Mario Carneiro, 14-Sep-2014) (Proof shortened 21-Mar-2015.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txcmp | ⊢ ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) → ( 𝑅 ×t 𝑆 ) ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmptop | ⊢ ( 𝑅 ∈ Comp → 𝑅 ∈ Top ) | |
| 2 | cmptop | ⊢ ( 𝑆 ∈ Comp → 𝑆 ∈ Top ) | |
| 3 | txtop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 5 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 6 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 7 | simpll | ⊢ ( ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ∧ ( 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ∧ ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 ) ) → 𝑅 ∈ Comp ) | |
| 8 | simplr | ⊢ ( ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ∧ ( 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ∧ ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 ) ) → 𝑆 ∈ Comp ) | |
| 9 | elpwi | ⊢ ( 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) → 𝑤 ⊆ ( 𝑅 ×t 𝑆 ) ) | |
| 10 | 9 | ad2antrl | ⊢ ( ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ∧ ( 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ∧ ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 ) ) → 𝑤 ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 11 | 5 6 | txuni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 12 | 1 2 11 | syl2an | ⊢ ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ∧ ( 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ∧ ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 ) ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 14 | simprr | ⊢ ( ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ∧ ( 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ∧ ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 ) ) → ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 ) | |
| 15 | 13 14 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ∧ ( 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ∧ ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 ) ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ 𝑤 ) |
| 16 | 5 6 7 8 10 15 | txcmplem2 | ⊢ ( ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ∧ ( 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ∧ ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑤 ∩ Fin ) ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ 𝑣 ) |
| 17 | 13 | eqeq1d | ⊢ ( ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ∧ ( 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ∧ ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 ) ) → ( ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ 𝑣 ↔ ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑣 ) ) |
| 18 | 17 | rexbidv | ⊢ ( ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ∧ ( 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ∧ ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 ) ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑤 ∩ Fin ) ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑤 ∩ Fin ) ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑣 ) ) |
| 19 | 16 18 | mpbid | ⊢ ( ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ∧ ( 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ∧ ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑤 ∩ Fin ) ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑣 ) |
| 20 | 19 | expr | ⊢ ( ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ∧ 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ) → ( ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 → ∃ 𝑣 ∈ ( 𝒫 𝑤 ∩ Fin ) ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑣 ) ) |
| 21 | 20 | ralrimiva | ⊢ ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) → ∀ 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 → ∃ 𝑣 ∈ ( 𝒫 𝑤 ∩ Fin ) ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑣 ) ) |
| 22 | eqid | ⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) | |
| 23 | 22 | iscmp | ⊢ ( ( 𝑅 ×t 𝑆 ) ∈ Comp ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ∀ 𝑤 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑤 → ∃ 𝑣 ∈ ( 𝒫 𝑤 ∩ Fin ) ∪ ( 𝑅 ×t 𝑆 ) = ∪ 𝑣 ) ) ) |
| 24 | 4 21 23 | sylanbrc | ⊢ ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) → ( 𝑅 ×t 𝑆 ) ∈ Comp ) |