This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | isopn2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐽 ↔ ( 𝑋 ∖ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | difss | ⊢ ( 𝑋 ∖ 𝑆 ) ⊆ 𝑋 | |
| 3 | 1 | iscld2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 ∖ 𝑆 ) ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) ∈ 𝐽 ) ) |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐽 ∈ Top → ( ( 𝑋 ∖ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) ∈ 𝐽 ) ) |
| 5 | dfss4 | ⊢ ( 𝑆 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) = 𝑆 ) | |
| 6 | 5 | biimpi | ⊢ ( 𝑆 ⊆ 𝑋 → ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) = 𝑆 ) |
| 7 | 6 | eleq1d | ⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑋 ∖ ( 𝑋 ∖ 𝑆 ) ) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽 ) ) |
| 8 | 4 7 | sylan9bb | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ↔ 𝑆 ∈ 𝐽 ) ) |
| 9 | 8 | bicomd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐽 ↔ ( 𝑋 ∖ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |