This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | eqeq1d | ⊢ ( 𝜑 → ( 𝐴 = 𝐶 ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | dfcleq | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 3 | 2 | biimpi | ⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 4 | bibi1 | ⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) ) | |
| 5 | 4 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) ) |
| 6 | albi | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) ) | |
| 7 | 1 3 5 6 | 4syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) ) |
| 8 | dfcleq | ⊢ ( 𝐴 = 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ) | |
| 9 | dfcleq | ⊢ ( 𝐵 = 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶 ) ) | |
| 10 | 7 8 9 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐴 = 𝐶 ↔ 𝐵 = 𝐶 ) ) |