This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f2ndres | ⊢ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑦 ∈ V | |
| 2 | vex | ⊢ 𝑧 ∈ V | |
| 3 | 1 2 | op2nda | ⊢ ∪ ran { 〈 𝑦 , 𝑧 〉 } = 𝑧 |
| 4 | 3 | eleq1i | ⊢ ( ∪ ran { 〈 𝑦 , 𝑧 〉 } ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) |
| 5 | 4 | biimpri | ⊢ ( 𝑧 ∈ 𝐵 → ∪ ran { 〈 𝑦 , 𝑧 〉 } ∈ 𝐵 ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ∪ ran { 〈 𝑦 , 𝑧 〉 } ∈ 𝐵 ) |
| 7 | 6 | rgen2 | ⊢ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ∪ ran { 〈 𝑦 , 𝑧 〉 } ∈ 𝐵 |
| 8 | sneq | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → { 𝑥 } = { 〈 𝑦 , 𝑧 〉 } ) | |
| 9 | 8 | rneqd | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ran { 𝑥 } = ran { 〈 𝑦 , 𝑧 〉 } ) |
| 10 | 9 | unieqd | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ∪ ran { 𝑥 } = ∪ ran { 〈 𝑦 , 𝑧 〉 } ) |
| 11 | 10 | eleq1d | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ∪ ran { 𝑥 } ∈ 𝐵 ↔ ∪ ran { 〈 𝑦 , 𝑧 〉 } ∈ 𝐵 ) ) |
| 12 | 11 | ralxp | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ∪ ran { 𝑥 } ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ∪ ran { 〈 𝑦 , 𝑧 〉 } ∈ 𝐵 ) |
| 13 | 7 12 | mpbir | ⊢ ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ∪ ran { 𝑥 } ∈ 𝐵 |
| 14 | df-2nd | ⊢ 2nd = ( 𝑥 ∈ V ↦ ∪ ran { 𝑥 } ) | |
| 15 | 14 | reseq1i | ⊢ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ ∪ ran { 𝑥 } ) ↾ ( 𝐴 × 𝐵 ) ) |
| 16 | ssv | ⊢ ( 𝐴 × 𝐵 ) ⊆ V | |
| 17 | resmpt | ⊢ ( ( 𝐴 × 𝐵 ) ⊆ V → ( ( 𝑥 ∈ V ↦ ∪ ran { 𝑥 } ) ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ran { 𝑥 } ) ) | |
| 18 | 16 17 | ax-mp | ⊢ ( ( 𝑥 ∈ V ↦ ∪ ran { 𝑥 } ) ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ran { 𝑥 } ) |
| 19 | 15 18 | eqtri | ⊢ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ran { 𝑥 } ) |
| 20 | 19 | fmpt | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐵 ) ∪ ran { 𝑥 } ∈ 𝐵 ↔ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐵 ) |
| 21 | 13 20 | mpbi | ⊢ ( 2nd ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) ⟶ 𝐵 |