This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for intersection of classes. Exercise 7 of TakeutiZaring p. 17. (Contributed by NM, 21-Jun-1993) (Proof shortened by SN, 12-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | incom | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabswap | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } = { 𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐴 } | |
| 2 | dfin5 | ⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵 } | |
| 3 | dfin5 | ⊢ ( 𝐵 ∩ 𝐴 ) = { 𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐴 } | |
| 4 | 1 2 3 | 3eqtr4i | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |