This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tx2cn | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f2ndres | ⊢ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑌 | |
| 2 | 1 | a1i | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 3 | ffn | ⊢ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑌 → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) | |
| 4 | elpreima | ⊢ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) → ( 𝑧 ∈ ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ) ) ) | |
| 5 | 1 3 4 | mp2b | ⊢ ( 𝑧 ∈ ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ) ) |
| 6 | fvres | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( 2nd ‘ 𝑧 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ) |
| 8 | 1st2nd2 | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 9 | xp1st | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( 1st ‘ 𝑧 ) ∈ 𝑋 ) | |
| 10 | elxp6 | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑤 ) ↔ ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( ( 1st ‘ 𝑧 ) ∈ 𝑋 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ) ) | |
| 11 | anass | ⊢ ( ( ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( 1st ‘ 𝑧 ) ∈ 𝑋 ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ↔ ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( ( 1st ‘ 𝑧 ) ∈ 𝑋 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ) ) | |
| 12 | 10 11 | bitr4i | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑤 ) ↔ ( ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( 1st ‘ 𝑧 ) ∈ 𝑋 ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ) |
| 13 | 12 | baib | ⊢ ( ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( 1st ‘ 𝑧 ) ∈ 𝑋 ) → ( 𝑧 ∈ ( 𝑋 × 𝑤 ) ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ) |
| 14 | 8 9 13 | syl2anc | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( 𝑧 ∈ ( 𝑋 × 𝑤 ) ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ) |
| 15 | 7 14 | bitr4d | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ↔ 𝑧 ∈ ( 𝑋 × 𝑤 ) ) ) |
| 16 | 15 | pm5.32i | ⊢ ( ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑤 ) ) ) |
| 17 | 5 16 | bitri | ⊢ ( 𝑧 ∈ ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑤 ) ) ) |
| 18 | toponss | ⊢ ( ( 𝑆 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ⊆ 𝑌 ) | |
| 19 | 18 | adantll | ⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ⊆ 𝑌 ) |
| 20 | xpss2 | ⊢ ( 𝑤 ⊆ 𝑌 → ( 𝑋 × 𝑤 ) ⊆ ( 𝑋 × 𝑌 ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑋 × 𝑤 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 22 | 21 | sseld | ⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑧 ∈ ( 𝑋 × 𝑤 ) → 𝑧 ∈ ( 𝑋 × 𝑌 ) ) ) |
| 23 | 22 | pm4.71rd | ⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑧 ∈ ( 𝑋 × 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑤 ) ) ) ) |
| 24 | 17 23 | bitr4id | ⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑧 ∈ ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ 𝑧 ∈ ( 𝑋 × 𝑤 ) ) ) |
| 25 | 24 | eqrdv | ⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) = ( 𝑋 × 𝑤 ) ) |
| 26 | toponmax | ⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝑅 ) | |
| 27 | txopn | ⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑋 ∈ 𝑅 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑋 × 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 28 | 27 | expr | ⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑋 ∈ 𝑅 ) → ( 𝑤 ∈ 𝑆 → ( 𝑋 × 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 29 | 26 28 | mpidan | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑤 ∈ 𝑆 → ( 𝑋 × 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 30 | 29 | imp | ⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑋 × 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 31 | 25 30 | eqeltrd | ⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 32 | 31 | ralrimiva | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ∀ 𝑤 ∈ 𝑆 ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 33 | txtopon | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 34 | iscn | ⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ↔ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑆 ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) ) | |
| 35 | 33 34 | sylancom | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ↔ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑆 ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) ) |
| 36 | 2 32 35 | mpbir2and | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |