This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resres | ⊢ ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( 𝐴 ↾ ( 𝐵 ∩ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | ⊢ ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 ↾ 𝐵 ) ∩ ( 𝐶 × V ) ) | |
| 2 | df-res | ⊢ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) ) | |
| 3 | 2 | ineq1i | ⊢ ( ( 𝐴 ↾ 𝐵 ) ∩ ( 𝐶 × V ) ) = ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∩ ( 𝐶 × V ) ) |
| 4 | xpindir | ⊢ ( ( 𝐵 ∩ 𝐶 ) × V ) = ( ( 𝐵 × V ) ∩ ( 𝐶 × V ) ) | |
| 5 | 4 | ineq2i | ⊢ ( 𝐴 ∩ ( ( 𝐵 ∩ 𝐶 ) × V ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( 𝐶 × V ) ) ) |
| 6 | df-res | ⊢ ( 𝐴 ↾ ( 𝐵 ∩ 𝐶 ) ) = ( 𝐴 ∩ ( ( 𝐵 ∩ 𝐶 ) × V ) ) | |
| 7 | inass | ⊢ ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∩ ( 𝐶 × V ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( 𝐶 × V ) ) ) | |
| 8 | 5 6 7 | 3eqtr4ri | ⊢ ( ( 𝐴 ∩ ( 𝐵 × V ) ) ∩ ( 𝐶 × V ) ) = ( 𝐴 ↾ ( 𝐵 ∩ 𝐶 ) ) |
| 9 | 1 3 8 | 3eqtri | ⊢ ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( 𝐴 ↾ ( 𝐵 ∩ 𝐶 ) ) |