This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A locally compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | llycmpkgen | ⊢ ( 𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | nllytop | ⊢ ( 𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top ) | |
| 3 | simpl | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐽 ∈ 𝑛-Locally Comp ) | |
| 4 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽 ) |
| 5 | 2 4 | syl | ⊢ ( 𝐽 ∈ 𝑛-Locally Comp → ∪ 𝐽 ∈ 𝐽 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ∪ 𝐽 ∈ 𝐽 ) |
| 7 | simpr | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑥 ∈ ∪ 𝐽 ) | |
| 8 | nllyi | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ ∪ 𝐽 ∈ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑘 ⊆ ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑘 ) ∈ Comp ) ) | |
| 9 | 3 6 7 8 | syl3anc | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑘 ⊆ ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑘 ) ∈ Comp ) ) |
| 10 | simpr | ⊢ ( ( 𝑘 ⊆ ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑘 ) ∈ Comp ) → ( 𝐽 ↾t 𝑘 ) ∈ Comp ) | |
| 11 | 10 | reximi | ⊢ ( ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑘 ⊆ ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑘 ) ∈ Comp ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝐽 ↾t 𝑘 ) ∈ Comp ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝐽 ↾t 𝑘 ) ∈ Comp ) |
| 13 | 1 2 12 | llycmpkgen2 | ⊢ ( 𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen ) |