This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imacmp | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima | ⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) | |
| 2 | 1 | oveq2i | ⊢ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) = ( 𝐾 ↾t ran ( 𝐹 ↾ 𝐴 ) ) |
| 3 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐽 ↾t 𝐴 ) ∈ Comp ) | |
| 4 | simpl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 5 | inss2 | ⊢ ( 𝐴 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 | |
| 6 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 6 | cnrest | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐴 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) → ( 𝐹 ↾ ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) Cn 𝐾 ) ) |
| 8 | 4 5 7 | sylancl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐹 ↾ ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) Cn 𝐾 ) ) |
| 9 | resdmres | ⊢ ( 𝐹 ↾ dom ( 𝐹 ↾ 𝐴 ) ) = ( 𝐹 ↾ 𝐴 ) | |
| 10 | dmres | ⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) | |
| 11 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 12 | 6 11 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 13 | fdm | ⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → dom 𝐹 = ∪ 𝐽 ) | |
| 14 | 4 12 13 | 3syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → dom 𝐹 = ∪ 𝐽 ) |
| 15 | 14 | ineq2d | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐴 ∩ dom 𝐹 ) = ( 𝐴 ∩ ∪ 𝐽 ) ) |
| 16 | 10 15 | eqtrid | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ ∪ 𝐽 ) ) |
| 17 | 16 | reseq2d | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐹 ↾ dom ( 𝐹 ↾ 𝐴 ) ) = ( 𝐹 ↾ ( 𝐴 ∩ ∪ 𝐽 ) ) ) |
| 18 | 9 17 | eqtr3id | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐹 ↾ 𝐴 ) = ( 𝐹 ↾ ( 𝐴 ∩ ∪ 𝐽 ) ) ) |
| 19 | cmptop | ⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ Comp → ( 𝐽 ↾t 𝐴 ) ∈ Top ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
| 21 | restrcl | ⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ Top → ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) ) | |
| 22 | 6 | restin | ⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) = ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ) |
| 23 | 20 21 22 | 3syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐽 ↾t 𝐴 ) = ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ) |
| 24 | 23 | oveq1d | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) = ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) Cn 𝐾 ) ) |
| 25 | 8 18 24 | 3eltr4d | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |
| 26 | rncmp | ⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ Comp ∧ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) → ( 𝐾 ↾t ran ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) | |
| 27 | 3 25 26 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐾 ↾t ran ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) |
| 28 | 2 27 | eqeltrid | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ∈ Comp ) |