This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009) (Proof shortened by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restabs | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → ( ( 𝐽 ↾t 𝑇 ) ↾t 𝑆 ) = ( 𝐽 ↾t 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → 𝐽 ∈ 𝑉 ) | |
| 2 | simp3 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → 𝑇 ∈ 𝑊 ) | |
| 3 | ssexg | ⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → 𝑆 ∈ V ) | |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → 𝑆 ∈ V ) |
| 5 | restco | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ∧ 𝑆 ∈ V ) → ( ( 𝐽 ↾t 𝑇 ) ↾t 𝑆 ) = ( 𝐽 ↾t ( 𝑇 ∩ 𝑆 ) ) ) | |
| 6 | 1 2 4 5 | syl3anc | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → ( ( 𝐽 ↾t 𝑇 ) ↾t 𝑆 ) = ( 𝐽 ↾t ( 𝑇 ∩ 𝑆 ) ) ) |
| 7 | simp2 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → 𝑆 ⊆ 𝑇 ) | |
| 8 | sseqin2 | ⊢ ( 𝑆 ⊆ 𝑇 ↔ ( 𝑇 ∩ 𝑆 ) = 𝑆 ) | |
| 9 | 7 8 | sylib | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → ( 𝑇 ∩ 𝑆 ) = 𝑆 ) |
| 10 | 9 | oveq2d | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → ( 𝐽 ↾t ( 𝑇 ∩ 𝑆 ) ) = ( 𝐽 ↾t 𝑆 ) ) |
| 11 | 6 10 | eqtrd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊 ) → ( ( 𝐽 ↾t 𝑇 ) ↾t 𝑆 ) = ( 𝐽 ↾t 𝑆 ) ) |