This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 6-Dec-2019) (Proof shortened by Wolf Lammen, 10-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralbidva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbidva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 1 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 3 | 2 | rexbidv2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |