This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed subset of a compact space is compact. (Contributed by Jeff Hankins, 29-Jun-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmpcld | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝑆 ) ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw | ⊢ ( 𝑠 ∈ 𝒫 𝐽 ↔ 𝑠 ⊆ 𝐽 ) | |
| 2 | simp1l | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → 𝐽 ∈ Comp ) | |
| 3 | simp2 | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → 𝑠 ⊆ 𝐽 ) | |
| 4 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 5 | 4 | cldopn | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑆 ) ∈ 𝐽 ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑆 ) ∈ 𝐽 ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ( ∪ 𝐽 ∖ 𝑆 ) ∈ 𝐽 ) |
| 8 | 7 | snssd | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → { ( ∪ 𝐽 ∖ 𝑆 ) } ⊆ 𝐽 ) |
| 9 | 3 8 | unssd | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ⊆ 𝐽 ) |
| 10 | simp3 | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → 𝑆 ⊆ ∪ 𝑠 ) | |
| 11 | uniss | ⊢ ( 𝑠 ⊆ 𝐽 → ∪ 𝑠 ⊆ ∪ 𝐽 ) | |
| 12 | 11 | 3ad2ant2 | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ∪ 𝑠 ⊆ ∪ 𝐽 ) |
| 13 | 10 12 | sstrd | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 14 | undif | ⊢ ( 𝑆 ⊆ ∪ 𝐽 ↔ ( 𝑆 ∪ ( ∪ 𝐽 ∖ 𝑆 ) ) = ∪ 𝐽 ) | |
| 15 | 13 14 | sylib | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ( 𝑆 ∪ ( ∪ 𝐽 ∖ 𝑆 ) ) = ∪ 𝐽 ) |
| 16 | unss1 | ⊢ ( 𝑆 ⊆ ∪ 𝑠 → ( 𝑆 ∪ ( ∪ 𝐽 ∖ 𝑆 ) ) ⊆ ( ∪ 𝑠 ∪ ( ∪ 𝐽 ∖ 𝑆 ) ) ) | |
| 17 | 16 | 3ad2ant3 | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ( 𝑆 ∪ ( ∪ 𝐽 ∖ 𝑆 ) ) ⊆ ( ∪ 𝑠 ∪ ( ∪ 𝐽 ∖ 𝑆 ) ) ) |
| 18 | 15 17 | eqsstrrd | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ∪ 𝐽 ⊆ ( ∪ 𝑠 ∪ ( ∪ 𝐽 ∖ 𝑆 ) ) ) |
| 19 | difss | ⊢ ( ∪ 𝐽 ∖ 𝑆 ) ⊆ ∪ 𝐽 | |
| 20 | unss | ⊢ ( ( ∪ 𝑠 ⊆ ∪ 𝐽 ∧ ( ∪ 𝐽 ∖ 𝑆 ) ⊆ ∪ 𝐽 ) ↔ ( ∪ 𝑠 ∪ ( ∪ 𝐽 ∖ 𝑆 ) ) ⊆ ∪ 𝐽 ) | |
| 21 | 12 19 20 | sylanblc | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ( ∪ 𝑠 ∪ ( ∪ 𝐽 ∖ 𝑆 ) ) ⊆ ∪ 𝐽 ) |
| 22 | 18 21 | eqssd | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ∪ 𝐽 = ( ∪ 𝑠 ∪ ( ∪ 𝐽 ∖ 𝑆 ) ) ) |
| 23 | uniexg | ⊢ ( 𝐽 ∈ Comp → ∪ 𝐽 ∈ V ) | |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ) → ∪ 𝐽 ∈ V ) |
| 25 | 24 | 3adant3 | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ∪ 𝐽 ∈ V ) |
| 26 | difexg | ⊢ ( ∪ 𝐽 ∈ V → ( ∪ 𝐽 ∖ 𝑆 ) ∈ V ) | |
| 27 | unisng | ⊢ ( ( ∪ 𝐽 ∖ 𝑆 ) ∈ V → ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } = ( ∪ 𝐽 ∖ 𝑆 ) ) | |
| 28 | 25 26 27 | 3syl | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } = ( ∪ 𝐽 ∖ 𝑆 ) ) |
| 29 | 28 | uneq2d | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ( ∪ 𝑠 ∪ ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) = ( ∪ 𝑠 ∪ ( ∪ 𝐽 ∖ 𝑆 ) ) ) |
| 30 | 22 29 | eqtr4d | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ∪ 𝐽 = ( ∪ 𝑠 ∪ ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) |
| 31 | uniun | ⊢ ∪ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) = ( ∪ 𝑠 ∪ ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) | |
| 32 | 30 31 | eqtr4di | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ∪ 𝐽 = ∪ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) |
| 33 | 4 | cmpcov | ⊢ ( ( 𝐽 ∈ Comp ∧ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) → ∃ 𝑢 ∈ ( 𝒫 ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∩ Fin ) ∪ 𝐽 = ∪ 𝑢 ) |
| 34 | 2 9 32 33 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ∃ 𝑢 ∈ ( 𝒫 ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∩ Fin ) ∪ 𝐽 = ∪ 𝑢 ) |
| 35 | elfpw | ⊢ ( 𝑢 ∈ ( 𝒫 ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∩ Fin ) ↔ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ) | |
| 36 | simp2l | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) | |
| 37 | uncom | ⊢ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) = ( { ( ∪ 𝐽 ∖ 𝑆 ) } ∪ 𝑠 ) | |
| 38 | 36 37 | sseqtrdi | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → 𝑢 ⊆ ( { ( ∪ 𝐽 ∖ 𝑆 ) } ∪ 𝑠 ) ) |
| 39 | ssundif | ⊢ ( 𝑢 ⊆ ( { ( ∪ 𝐽 ∖ 𝑆 ) } ∪ 𝑠 ) ↔ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ⊆ 𝑠 ) | |
| 40 | 38 39 | sylib | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ⊆ 𝑠 ) |
| 41 | diffi | ⊢ ( 𝑢 ∈ Fin → ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∈ Fin ) | |
| 42 | 41 | ad2antll | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ) → ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∈ Fin ) |
| 43 | 42 | 3adant3 | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∈ Fin ) |
| 44 | elfpw | ⊢ ( ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∈ ( 𝒫 𝑠 ∩ Fin ) ↔ ( ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ⊆ 𝑠 ∧ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∈ Fin ) ) | |
| 45 | 40 43 44 | sylanbrc | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∈ ( 𝒫 𝑠 ∩ Fin ) ) |
| 46 | 10 | 3ad2ant1 | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → 𝑆 ⊆ ∪ 𝑠 ) |
| 47 | 12 | 3ad2ant1 | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → ∪ 𝑠 ⊆ ∪ 𝐽 ) |
| 48 | simp3 | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → ∪ 𝐽 = ∪ 𝑢 ) | |
| 49 | 47 48 | sseqtrd | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → ∪ 𝑠 ⊆ ∪ 𝑢 ) |
| 50 | 46 49 | sstrd | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → 𝑆 ⊆ ∪ 𝑢 ) |
| 51 | 50 | sselda | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → 𝑣 ∈ ∪ 𝑢 ) |
| 52 | eluni | ⊢ ( 𝑣 ∈ ∪ 𝑢 ↔ ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑢 ) ) | |
| 53 | 51 52 | sylib | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑢 ) ) |
| 54 | simpl | ⊢ ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑢 ) → 𝑣 ∈ 𝑤 ) | |
| 55 | 54 | a1i | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑢 ) → 𝑣 ∈ 𝑤 ) ) |
| 56 | simpr | ⊢ ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑢 ) → 𝑤 ∈ 𝑢 ) | |
| 57 | 56 | a1i | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑢 ) → 𝑤 ∈ 𝑢 ) ) |
| 58 | elndif | ⊢ ( 𝑣 ∈ 𝑆 → ¬ 𝑣 ∈ ( ∪ 𝐽 ∖ 𝑆 ) ) | |
| 59 | 58 | ad2antlr | ⊢ ( ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑤 ) → ¬ 𝑣 ∈ ( ∪ 𝐽 ∖ 𝑆 ) ) |
| 60 | eleq2 | ⊢ ( 𝑤 = ( ∪ 𝐽 ∖ 𝑆 ) → ( 𝑣 ∈ 𝑤 ↔ 𝑣 ∈ ( ∪ 𝐽 ∖ 𝑆 ) ) ) | |
| 61 | 60 | biimpd | ⊢ ( 𝑤 = ( ∪ 𝐽 ∖ 𝑆 ) → ( 𝑣 ∈ 𝑤 → 𝑣 ∈ ( ∪ 𝐽 ∖ 𝑆 ) ) ) |
| 62 | 61 | a1i | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ( 𝑤 = ( ∪ 𝐽 ∖ 𝑆 ) → ( 𝑣 ∈ 𝑤 → 𝑣 ∈ ( ∪ 𝐽 ∖ 𝑆 ) ) ) ) |
| 63 | 62 | com23 | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ( 𝑣 ∈ 𝑤 → ( 𝑤 = ( ∪ 𝐽 ∖ 𝑆 ) → 𝑣 ∈ ( ∪ 𝐽 ∖ 𝑆 ) ) ) ) |
| 64 | 63 | imp | ⊢ ( ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑤 ) → ( 𝑤 = ( ∪ 𝐽 ∖ 𝑆 ) → 𝑣 ∈ ( ∪ 𝐽 ∖ 𝑆 ) ) ) |
| 65 | 59 64 | mtod | ⊢ ( ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) ∧ 𝑣 ∈ 𝑤 ) → ¬ 𝑤 = ( ∪ 𝐽 ∖ 𝑆 ) ) |
| 66 | 65 | ex | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ( 𝑣 ∈ 𝑤 → ¬ 𝑤 = ( ∪ 𝐽 ∖ 𝑆 ) ) ) |
| 67 | 66 | adantrd | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑢 ) → ¬ 𝑤 = ( ∪ 𝐽 ∖ 𝑆 ) ) ) |
| 68 | velsn | ⊢ ( 𝑤 ∈ { ( ∪ 𝐽 ∖ 𝑆 ) } ↔ 𝑤 = ( ∪ 𝐽 ∖ 𝑆 ) ) | |
| 69 | 68 | notbii | ⊢ ( ¬ 𝑤 ∈ { ( ∪ 𝐽 ∖ 𝑆 ) } ↔ ¬ 𝑤 = ( ∪ 𝐽 ∖ 𝑆 ) ) |
| 70 | 67 69 | imbitrrdi | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑢 ) → ¬ 𝑤 ∈ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) |
| 71 | 57 70 | jcad | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑢 ) → ( 𝑤 ∈ 𝑢 ∧ ¬ 𝑤 ∈ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) ) |
| 72 | eldif | ⊢ ( 𝑤 ∈ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ↔ ( 𝑤 ∈ 𝑢 ∧ ¬ 𝑤 ∈ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) | |
| 73 | 71 72 | imbitrrdi | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑢 ) → 𝑤 ∈ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) ) |
| 74 | 55 73 | jcad | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑢 ) → ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) ) ) |
| 75 | 74 | eximdv | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ( ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑢 ) → ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) ) ) |
| 76 | 53 75 | mpd | ⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) ∧ 𝑣 ∈ 𝑆 ) → ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) ) |
| 77 | 76 | ex | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → ( 𝑣 ∈ 𝑆 → ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) ) ) |
| 78 | eluni | ⊢ ( 𝑣 ∈ ∪ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ↔ ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) ) | |
| 79 | 77 78 | imbitrrdi | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → ( 𝑣 ∈ 𝑆 → 𝑣 ∈ ∪ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) ) |
| 80 | 79 | ssrdv | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → 𝑆 ⊆ ∪ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) |
| 81 | unieq | ⊢ ( 𝑡 = ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) → ∪ 𝑡 = ∪ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) | |
| 82 | 81 | sseq2d | ⊢ ( 𝑡 = ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) → ( 𝑆 ⊆ ∪ 𝑡 ↔ 𝑆 ⊆ ∪ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) ) |
| 83 | 82 | rspcev | ⊢ ( ( ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∈ ( 𝒫 𝑠 ∩ Fin ) ∧ 𝑆 ⊆ ∪ ( 𝑢 ∖ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) 𝑆 ⊆ ∪ 𝑡 ) |
| 84 | 45 80 83 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ ( 𝑢 ⊆ ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∧ 𝑢 ∈ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) 𝑆 ⊆ ∪ 𝑡 ) |
| 85 | 35 84 | syl3an2b | ⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) ∧ 𝑢 ∈ ( 𝒫 ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑢 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) 𝑆 ⊆ ∪ 𝑡 ) |
| 86 | 85 | rexlimdv3a | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ( ∃ 𝑢 ∈ ( 𝒫 ( 𝑠 ∪ { ( ∪ 𝐽 ∖ 𝑆 ) } ) ∩ Fin ) ∪ 𝐽 = ∪ 𝑢 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) 𝑆 ⊆ ∪ 𝑡 ) ) |
| 87 | 34 86 | mpd | ⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑠 ⊆ 𝐽 ∧ 𝑆 ⊆ ∪ 𝑠 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) 𝑆 ⊆ ∪ 𝑡 ) |
| 88 | 87 | 3exp | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑠 ⊆ 𝐽 → ( 𝑆 ⊆ ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) 𝑆 ⊆ ∪ 𝑡 ) ) ) |
| 89 | 1 88 | biimtrid | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑠 ∈ 𝒫 𝐽 → ( 𝑆 ⊆ ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) 𝑆 ⊆ ∪ 𝑡 ) ) ) |
| 90 | 89 | ralrimiv | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ∀ 𝑠 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) 𝑆 ⊆ ∪ 𝑡 ) ) |
| 91 | cmptop | ⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) | |
| 92 | 4 | cldss | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 93 | 4 | cmpsub | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ↔ ∀ 𝑠 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) 𝑆 ⊆ ∪ 𝑡 ) ) ) |
| 94 | 91 92 93 | syl2an | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ↔ ∀ 𝑠 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) 𝑆 ⊆ ∪ 𝑡 ) ) ) |
| 95 | 90 94 | mpbird | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝑆 ) ∈ Comp ) |