This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txcnmpt.1 | ⊢ 𝑊 = ∪ 𝑈 | |
| txcnmpt.2 | ⊢ 𝐻 = ( 𝑥 ∈ 𝑊 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) | ||
| Assertion | txcnmpt | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐻 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcnmpt.1 | ⊢ 𝑊 = ∪ 𝑈 | |
| 2 | txcnmpt.2 | ⊢ 𝐻 = ( 𝑥 ∈ 𝑊 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) | |
| 3 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 4 | 1 3 | cnf | ⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → 𝐹 : 𝑊 ⟶ ∪ 𝑅 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐹 : 𝑊 ⟶ ∪ 𝑅 ) |
| 6 | 5 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝑅 ) |
| 7 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 8 | 1 7 | cnf | ⊢ ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) → 𝐺 : 𝑊 ⟶ ∪ 𝑆 ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐺 : 𝑊 ⟶ ∪ 𝑆 ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝐺 ‘ 𝑥 ) ∈ ∪ 𝑆 ) |
| 11 | 6 10 | opelxpd | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 12 | 11 2 | fmptd | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐻 : 𝑊 ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 13 | 2 | mptpreima | ⊢ ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) = { 𝑥 ∈ 𝑊 ∣ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑟 × 𝑠 ) } |
| 14 | 5 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐹 : 𝑊 ⟶ ∪ 𝑅 ) |
| 15 | 14 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → 𝐹 : 𝑊 ⟶ ∪ 𝑅 ) |
| 16 | ffn | ⊢ ( 𝐹 : 𝑊 ⟶ ∪ 𝑅 → 𝐹 Fn 𝑊 ) | |
| 17 | elpreima | ⊢ ( 𝐹 Fn 𝑊 → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑟 ) ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ) ) ) | |
| 18 | 15 16 17 | 3syl | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑟 ) ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ) ) ) |
| 19 | ibar | ⊢ ( 𝑥 ∈ 𝑊 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ) ) ) | |
| 20 | 19 | adantl | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ) ) ) |
| 21 | 18 20 | bitr4d | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑟 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ) ) |
| 22 | 9 | ad2antrr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → 𝐺 : 𝑊 ⟶ ∪ 𝑆 ) |
| 23 | ffn | ⊢ ( 𝐺 : 𝑊 ⟶ ∪ 𝑆 → 𝐺 Fn 𝑊 ) | |
| 24 | elpreima | ⊢ ( 𝐺 Fn 𝑊 → ( 𝑥 ∈ ( ◡ 𝐺 “ 𝑠 ) ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) ) | |
| 25 | 22 23 24 | 3syl | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑥 ∈ ( ◡ 𝐺 “ 𝑠 ) ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
| 26 | ibar | ⊢ ( 𝑥 ∈ 𝑊 → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) ) | |
| 27 | 26 | adantl | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
| 28 | 25 27 | bitr4d | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑥 ∈ ( ◡ 𝐺 “ 𝑠 ) ↔ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) |
| 29 | 21 28 | anbi12d | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑟 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ 𝑠 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
| 30 | elin | ⊢ ( 𝑥 ∈ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ↔ ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑟 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ 𝑠 ) ) ) | |
| 31 | opelxp | ⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑟 × 𝑠 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) | |
| 32 | 29 30 31 | 3bitr4g | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑥 ∈ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ↔ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑟 × 𝑠 ) ) ) |
| 33 | 32 | rabbi2dva | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑊 ∩ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) = { 𝑥 ∈ 𝑊 ∣ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑟 × 𝑠 ) } ) |
| 34 | inss1 | ⊢ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ⊆ ( ◡ 𝐹 “ 𝑟 ) | |
| 35 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑟 ) ⊆ dom 𝐹 | |
| 36 | 34 35 | sstri | ⊢ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ⊆ dom 𝐹 |
| 37 | 36 14 | fssdm | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ⊆ 𝑊 ) |
| 38 | sseqin2 | ⊢ ( ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ⊆ 𝑊 ↔ ( 𝑊 ∩ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) = ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) | |
| 39 | 37 38 | sylib | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑊 ∩ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) = ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) |
| 40 | 33 39 | eqtr3d | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → { 𝑥 ∈ 𝑊 ∣ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑟 × 𝑠 ) } = ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) |
| 41 | 13 40 | eqtrid | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) = ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) |
| 42 | cntop1 | ⊢ ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) → 𝑈 ∈ Top ) | |
| 43 | 42 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝑈 ∈ Top ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑈 ∈ Top ) |
| 45 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝑟 ∈ 𝑅 ) → ( ◡ 𝐹 “ 𝑟 ) ∈ 𝑈 ) | |
| 46 | 45 | ad2ant2r | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ◡ 𝐹 “ 𝑟 ) ∈ 𝑈 ) |
| 47 | cnima | ⊢ ( ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ∧ 𝑠 ∈ 𝑆 ) → ( ◡ 𝐺 “ 𝑠 ) ∈ 𝑈 ) | |
| 48 | 47 | ad2ant2l | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ◡ 𝐺 “ 𝑠 ) ∈ 𝑈 ) |
| 49 | inopn | ⊢ ( ( 𝑈 ∈ Top ∧ ( ◡ 𝐹 “ 𝑟 ) ∈ 𝑈 ∧ ( ◡ 𝐺 “ 𝑠 ) ∈ 𝑈 ) → ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ∈ 𝑈 ) | |
| 50 | 44 46 48 49 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ∈ 𝑈 ) |
| 51 | 41 50 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) ∈ 𝑈 ) |
| 52 | 51 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∀ 𝑟 ∈ 𝑅 ∀ 𝑠 ∈ 𝑆 ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) ∈ 𝑈 ) |
| 53 | vex | ⊢ 𝑟 ∈ V | |
| 54 | vex | ⊢ 𝑠 ∈ V | |
| 55 | 53 54 | xpex | ⊢ ( 𝑟 × 𝑠 ) ∈ V |
| 56 | 55 | rgen2w | ⊢ ∀ 𝑟 ∈ 𝑅 ∀ 𝑠 ∈ 𝑆 ( 𝑟 × 𝑠 ) ∈ V |
| 57 | eqid | ⊢ ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) = ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) | |
| 58 | imaeq2 | ⊢ ( 𝑧 = ( 𝑟 × 𝑠 ) → ( ◡ 𝐻 “ 𝑧 ) = ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) ) | |
| 59 | 58 | eleq1d | ⊢ ( 𝑧 = ( 𝑟 × 𝑠 ) → ( ( ◡ 𝐻 “ 𝑧 ) ∈ 𝑈 ↔ ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) ∈ 𝑈 ) ) |
| 60 | 57 59 | ralrnmpo | ⊢ ( ∀ 𝑟 ∈ 𝑅 ∀ 𝑠 ∈ 𝑆 ( 𝑟 × 𝑠 ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) ( ◡ 𝐻 “ 𝑧 ) ∈ 𝑈 ↔ ∀ 𝑟 ∈ 𝑅 ∀ 𝑠 ∈ 𝑆 ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) ∈ 𝑈 ) ) |
| 61 | 56 60 | ax-mp | ⊢ ( ∀ 𝑧 ∈ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) ( ◡ 𝐻 “ 𝑧 ) ∈ 𝑈 ↔ ∀ 𝑟 ∈ 𝑅 ∀ 𝑠 ∈ 𝑆 ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) ∈ 𝑈 ) |
| 62 | 52 61 | sylibr | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∀ 𝑧 ∈ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) ( ◡ 𝐻 “ 𝑧 ) ∈ 𝑈 ) |
| 63 | 1 | toptopon | ⊢ ( 𝑈 ∈ Top ↔ 𝑈 ∈ ( TopOn ‘ 𝑊 ) ) |
| 64 | 43 63 | sylib | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝑈 ∈ ( TopOn ‘ 𝑊 ) ) |
| 65 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → 𝑅 ∈ Top ) | |
| 66 | cntop2 | ⊢ ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) → 𝑆 ∈ Top ) | |
| 67 | eqid | ⊢ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) = ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) | |
| 68 | 67 | txval | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) = ( topGen ‘ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) ) ) |
| 69 | 65 66 68 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) = ( topGen ‘ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) ) ) |
| 70 | toptopon2 | ⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) | |
| 71 | 65 70 | sylib | ⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
| 72 | toptopon2 | ⊢ ( 𝑆 ∈ Top ↔ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) | |
| 73 | 66 72 | sylib | ⊢ ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) → 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
| 74 | txtopon | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ∧ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) | |
| 75 | 71 73 74 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) |
| 76 | 64 69 75 | tgcn | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( 𝐻 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ↔ ( 𝐻 : 𝑊 ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ ∀ 𝑧 ∈ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) ( ◡ 𝐻 “ 𝑧 ) ∈ 𝑈 ) ) ) |
| 77 | 12 62 76 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐻 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) |