This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eliminate the neighborhood symbol from nllyi . (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlly2i | ⊢ ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) → ∃ 𝑠 ∈ 𝒫 𝑈 ∃ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nllyi | ⊢ ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) → ∃ 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) | |
| 2 | simprrl | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑠 ⊆ 𝑈 ) | |
| 3 | velpw | ⊢ ( 𝑠 ∈ 𝒫 𝑈 ↔ 𝑠 ⊆ 𝑈 ) | |
| 4 | 2 3 | sylibr | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑠 ∈ 𝒫 𝑈 ) |
| 5 | simpl1 | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝐽 ∈ 𝑛-Locally 𝐴 ) | |
| 6 | nllytop | ⊢ ( 𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝐽 ∈ Top ) |
| 8 | simprl | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) | |
| 9 | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ∃ 𝑢 ∈ 𝐽 ( { 𝑃 } ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠 ) ) | |
| 10 | 7 8 9 | syl2anc | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ∃ 𝑢 ∈ 𝐽 ( { 𝑃 } ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠 ) ) |
| 11 | simprl | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ∧ ( { 𝑃 } ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠 ) ) → { 𝑃 } ⊆ 𝑢 ) | |
| 12 | simpll3 | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ∧ ( { 𝑃 } ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠 ) ) → 𝑃 ∈ 𝑈 ) | |
| 13 | snssg | ⊢ ( 𝑃 ∈ 𝑈 → ( 𝑃 ∈ 𝑢 ↔ { 𝑃 } ⊆ 𝑢 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ∧ ( { 𝑃 } ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠 ) ) → ( 𝑃 ∈ 𝑢 ↔ { 𝑃 } ⊆ 𝑢 ) ) |
| 15 | 11 14 | mpbird | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ∧ ( { 𝑃 } ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠 ) ) → 𝑃 ∈ 𝑢 ) |
| 16 | simprr | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ∧ ( { 𝑃 } ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠 ) ) → 𝑢 ⊆ 𝑠 ) | |
| 17 | simprrr | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) | |
| 18 | 17 | adantr | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ∧ ( { 𝑃 } ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠 ) ) → ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) |
| 19 | 15 16 18 | 3jca | ⊢ ( ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) ∧ ( { 𝑃 } ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠 ) ) → ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) |
| 20 | 19 | ex | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( ( { 𝑃 } ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠 ) → ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) |
| 21 | 20 | reximdv | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ( ∃ 𝑢 ∈ 𝐽 ( { 𝑃 } ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑠 ) → ∃ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) |
| 22 | 10 21 | mpd | ⊢ ( ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ∧ ( 𝑠 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∧ ( 𝑠 ⊆ 𝑈 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) |
| 23 | 1 4 22 | reximssdv | ⊢ ( ( 𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) → ∃ 𝑠 ∈ 𝒫 𝑈 ∃ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝐽 ↾t 𝑠 ) ∈ 𝐴 ) ) |