This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opeq1 | ⊢ ( 𝐴 = 𝐵 → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐶 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ↔ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) ) |
| 3 | sneq | ⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } ) | |
| 4 | preq1 | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐶 } = { 𝐵 , 𝐶 } ) | |
| 5 | 3 4 | preq12d | ⊢ ( 𝐴 = 𝐵 → { { 𝐴 } , { 𝐴 , 𝐶 } } = { { 𝐵 } , { 𝐵 , 𝐶 } } ) |
| 6 | 2 5 | ifbieq1d | ⊢ ( 𝐴 = 𝐵 → if ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐶 } } , ∅ ) = if ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) , { { 𝐵 } , { 𝐵 , 𝐶 } } , ∅ ) ) |
| 7 | dfopif | ⊢ 〈 𝐴 , 𝐶 〉 = if ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐶 } } , ∅ ) | |
| 8 | dfopif | ⊢ 〈 𝐵 , 𝐶 〉 = if ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) , { { 𝐵 } , { 𝐵 , 𝐶 } } , ∅ ) | |
| 9 | 6 7 8 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐶 〉 ) |